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1 Introduction

The goal of this course is to get to the definition of derived categories, and be able to discuss
derived functors in these terms. We will start with additive and abelian categories. Given
an abelian category A, we’ll consider the category C(A) of cochain complexes in A, which
is also abelian.

Then we’ll study K(A), the homotopy category of cochain complexes - here the objects
are again cochain complexes, but the morphisms are considered only up to chain homo-
topy. Unfortunately, K(A) is not abelian, but a suitable approximation for this is that
K(A) is a triangulated category, where “distinguished triangles” serve as an approxima-
tion/replacement for exact sequences.

Next we consider quasi-isomorphisms of chain complexes, which are chain maps such
that all the induced maps on homology are isomorphisms. To get from K(A) to the derived
category, we formally invert all quasi-isomorphisms. This is akin to the process of localizing
a ring, or forming the Grothendieck group of a monoid.

Once we’ve defined the derived category, we’ll try to rework the usual definition of right
derived functors in the language of derived categories. Recall that usually describing derived
functors involves things like injective resolutions, and there is some hassle of showing that the
chosen resolution does not impact the final calculations. In the derived category language,
we can avoid some of this hassle, by obtaining a more abstract and “coordinate-free” version
of derived functors. This framework has advantages when proving more abstract results
regarding derived functors. In particular, we can discuss compositions of derived functors
without dealing with the Grothendieck spectral sequence.
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2 Abelian categories

Before getting to the definition of an abelian category, we define additive categories. Every
abelian category is additive, so this builds to toward abelian categories.

2.1 Additive categories

Definition 2.1. A category C is additive if

1. For any objects A,B, HomC(A,B) is an abelian group, and composition of morphisms
is bilinear. This means than if we have

A B C D
f

g2

g1 h

then
h ◦ (g1 + g2) ◦ f = h ◦ g1 ◦ f + h ◦ g2 ◦ f

2. C has a zero object (an object which is both initial and terminal). We denote this
object by 0.

3. C has all finite products and coproducts, and these coincide. These are denoted A⊕B,
and sometimes referred to as biproducts.

Remark 2.2. In the definition above, it is sufficient to only assume that all finite coproducts
exist. From this and the other properties, it follows that finite products exist, and that they
coincide with coproducts.

Definition 2.3. A functor F : C → D between additive categories is additive if for any
two objects A,B, the map

HomC(A,B)→ HomD(FA, FB)

is a morphism of abelian groups.

Remark 2.4. It follows from above that an additive functor preserves finite biproducts.

Example 2.5. Let R be a ring (not necessarily commutative), and let C be the category
of left R-modules. Then C is additive. Similarly, the category of finitely generated left
R-modules is additive.

Definition 2.6. Let C be a category, and let f, g : X → Y be morphisms in C. The
equalizer of f and g is an object E and a morphism e : E → X making the following
diagram commute,

X

E Y

X

fe

e g
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and such that E, e are universal in this diagram. Concretely, that means that for any object
Z with a morphism z : Z → X such that the analogous diagram commutes,

X

Z Y

X

fz

z g

then there exists a unique morphisms θ : Z → E making the following diagram commute.

X

Z E Y

X

f

θ

z

z

e

e g

Definition 2.7. The coequalizer of two morphisms is defined analogously, with the arrows
reversed.

Remark 2.8. In an abelian category, the equalizer of two morphisms f, g is just the kernel
of f − g.

Definition 2.9. Let f : A→ B be a morphism in an additive category C. The kernel of f

is the equalizer of f and the zero morphism A
0−→ B. That is, ker f is a pair (K,κ), where

κ : K → A is a morphism such that fκ = 0 and κ is universal with this property. This
means that if κ′ : K ′ → A also satsfies fκ′ = 0, then there is a unique morphism θ : K ′ → K
such that κ′ = κθ.

A

K ′ K B

A

f

θ

κ′

κ′

κ

κ 0

Definition 2.10. Let f : A→ B be a morphism in an additive category. The cokernel of
f is the coequalizer of f and the zero morphism.

Remark 2.11. While technically a kernel or cokernel is a pair of an object with a morphism,
frequently we are loose with language and refer to either the associated morphism or the
associated object as the kernel. In concrete categories like R-mod, it’s more common to think
of the associated object as the kernel, since the associated morphism is just an inclusion map.
In more abstract/general settings, often the morphism is the focus.
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Definition 2.12. Let C be a category. The opposite category Cop has the same objects
as C, but the arrows are all reversed.

HomCop(A,B) := HomC(B,A)

Example 2.13. Given a morphism f in C, the kernel of f in C is the same as coker f in Cop.

Definition 2.14. A morphism f : X → Y is a monomorphism if for any g1, g2 : Z → X
we have

fg1 = fg2 =⇒ g1 = g2

Z X Y
g2

g1 f

Definition 2.15. A morphism f : X → Y is an epimorphism if for any h1, h2 : Y → Z
we have

h1f = h2f =⇒ h1 = h2

X Y Z
f

h2

h1

Remark 2.16. Let f : X → Y . The kernel of f , if it exists, is a monomorphism. The
cokernel, if it exists, is an epimorphism.

Kernels and cokernels may fail to exist in additive categories.

Example 2.17 (Failure of kernel to exist). Let R be a non-Noetherian commutative ring,
such as k[x1, x2, . . .], a polynomial ring in countably many variables over a field. Let C be the
category of finitely generated R-modules. As R is non-Noetherian, it has an ideal I which is
not finitely generated (as an ideal, so also not finitely generated as an R-module). Consider
the quotient morphism

R
f−→ R/I

In the category of R-modules, the kernel of f is I, but this cannot be the kernel in the
category of finitely generated R-modules, so in fact this morphism has no kernel in C.

Example 2.18 (Failure of cokernel to exist). Let C be the category of free abelian groups.
This is an additive category. Consider the morphism

Z→ Z n 7→ 2n

The cokernel “should be” Z/2Z (this is the cokernel in the category of abelian groups), but
this is not free. So this morphism fails to have a cokernel in C.

These examples motivate the definition of abelian categories, where such “bad behavior” is
prohibited.
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2.2 Abelian categories

Definition 2.19. A category A is abelian if it is additive, and satisfies

1. Every morphism in A has a kernel and cokernel.

2. Every monomorphism is the kernel of its cokernel.

3. Every epimorphism is the cokernel of its kernel.

Remark 2.20. This definition is self-dual, so A is abelian if and only if Aop is abelian.

Remark 2.21. How should we think about properties (2) and (3) above? As a slogan, we
think of them as saying

The first isomorphism theorem holds in A.

Don’t take this too literally, but this is roughly what properties (2) and (3) are trying to
capture. Below, we reformulate these properties in terms of “strict” morphisms.

Definition 2.22. Let f : X → Y be a morphism in an abelian category A. Let κ : K → X
and ρ : Y → Q be the kernel and cokernel of f , respectively.

K X Y Qκ f ρ

We can factor f through the cokernel of κ.

X cokerκ Yα

f

β

Then 0 = ρf = ρβα. Since α is the canonical map associated with the cokernel of κ, it is an
epimorphism. So ρβα = 0 =⇒ ρβ = 0. Then by the universal property of the kernel of ρ,
β factors through ker ρ.

K X Y Q

cokerκ ker ρ

κ

α

f ρ

β

ι

In the diagram above, the arrow ker ρ→ Y is the canonical map associated with the kernel.
The morphism ι : cokerκ→ ker ρ is called the canonical map associated to f . To write
things just in terms of f ,

ι : coker ker f → ker coker f

Definition 2.23. The morphism f is called strict if the associated map ι is an isomorphism.

Proposition 2.24. Every morphism in an abelian category is strict.
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We will get to the proof later. In fact, one can show more than the proposition - it is possible
to show that properties (2) and (3) of an abelian category are equivalent to every morphism
being strict, but we will not concern ourselves with the reverse implication. The proof will
proceed in three main steps.

1. Show the map β : coker ker f → Y is a monomorphism.

2. Show coker β = coker f .

3. Use the fact that every monomorphism is the kernel of its cokernel.

Before the proof, we develop some terminology and a lemma.

Definition 2.25. Let f : A→ C, g : B → C be morphisms in a category. The pullback of
f and g is the limit of the diagram

A

B C

f

g

The object associated with the pullback is denoted A ×C D. This notation is sometimes
unfortunate, since it does not emphasize how the pullback depends heavily on the morphisms
f and g.

Lemma 2.26 (Pullbacks in abelian categories). Let A be an abelian category.

1. Pullbacks exist in A.

2. Epimorphisms are stable under pullback in A. That is, if

D A

B C

h

k f

g

is a pullback square and g is an epimorphism, then h is an epimorphism.

Remark 2.27. In an algebraic geometry context, part (2) of the previous lemma might be
phrased as saying that “epimorphisms are stable under base extension.”

Proof. (1) Let A⊕B be the biproduct of A,B, with canonical projection maps p1 : A⊕B →
A, p2 : A⊕B → B. Consider the map

fp1 − gp2 : A⊕B → C

Let κ : D → A ⊕ B be the kernel of the above morphism. Set h = p1κ : D → A and
k = p2κ : D → B. Then
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D A

B C

h

k f

g

is the pullback. This technically requires verifying a universal property, which we omit.
(2) Now suppose g is an epimorphism. First, we will show that fp1 − gp2 is epi. Let

φ1, φ2 : C → Z be maps such that

φ1(fp1 − gp2) = φ2(fp1 − gp2)

We wish to show φ1 = φ2. Let i2 : B → A ⊕ B be the canonical map associated with the
coproduct, so we know p1i2 = 0 and p2i2 = IdB. Then

φ1(fp1 − gp2)i2 = φ1f1p1i2 − φ1gp2i2 = −φ1g

Similarly,
φ2(fp1 − gp2)i2 = −φ2g

Thus φ1g = φ2g. Since g is epi, φ1 = φ2, so fp1 − gp2 is epi as claimed. Now we can show h
is epi. Suppose ψ1, ψ2 : A→ Y are morphisms such that ψ1h = ψ2h. Then (ψ1 − ψ2)h = 0.
By part (1), h = p1κ where κ : D → A⊕B is the kernel of fp1 − gp2. So

(ψ1 − ψ2)p1κ = 0

Thus (ψ1−ψ2)p1 factors through cokerκ. But we showsed that fp1− gp2 is epi, and κ is its
kernel. So fp1gp2 is the cokernel of κ, by the defining properties of an abelian category. So
(ψ1−ψ2)p1 factors through C, meaning there is a morphism t : C → Y making the following
diagram commute.

A⊕B C

A Y

fp1−gp2

p1 t

ψ1−ψ2

Now consider the composition with either path on the above square with i2 : B → A⊕B.

0 = (ψ1 − ψ2)p1i2 = t(fp1 − gp2)i2 = tfp1i2 − tgp2i2 = −tg

So −tg = 0. Since g is epi, this implies t = 0. Then by the commutative square, (ψ1−ψ2)p1 =
0. Since p1 is epi, this means ψ1 − ψ2 = 0, so ψ1 = ψ2. Hence h is epi.

Remark 2.28. The dual argument shows that pushouts exist in abelian categories.

Remark 2.29. Part (1) of the lemma and the previous remark are significantly generalized
by the following fact: in an abelian category, all finite limits and colimits exist.

Next we state a lemma without proof.

Lemma 2.30. Let f : X → Y be a morphism in an abelian category A with factorization

X
g−→ X ′

h−→ Y where g is an epimorphism. Then coker f ∼= cokerh.
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Now we have the tools to prove the prosition from before.

Proposition 2.31. Every morphism in an abelian category is strict.

As mentioned, the proof will follow this outline:

1. Show the map β : coker ker f → Y is a monomorphism.

2. Show coker β = coker f .

3. Use the fact that every monomorphism is the kernel of its cokernel.

Proof. Let κ, ρ, α, β, ι be as in definition 2.22.

K X Y Q

cokerκ ker ρ

κ

α

f ρ

β

ι

(1) We show β is a monomorphism. Suppose φ1, φ2 : Z → cokerκ satisfy βφ1 = βφ2. Let
σ = φ1 − φ2, so βσ = 0. Consider the pullback of α and σ.

W Z

X cokerκ

τ

π σ

α

Then since f = βα,
fπ = βαπ = βστ = 0

Thus π factors through ker f = K. That is, there exists a unique morphism ω : W → K
making the following diagram commute.

W Z

K X cokerκ

τ

ω π σ

κ α

By definition of the kernel, ακ = 0, so στ = ακω = 0. Since α is epi, τ is epi by Lemma
2.26. So στ = 0 implies σ = 0. Hence φ1 = φ2, and β is a monomorphism.

(2) Now recall that f factors as

X cokerκ Yα

f

β

Since α is epi, by Lemma 2.30 coker β = coker f . Since β is a monomorphism, it is the kernel
of its cokernel. That is, β is the kernel of the cokernel of f . But ker ρ→ Y is also the kernel
of the cokernel of f , so the morphism ι must be an isomorphim by the universal property of
the kernel.
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K X Y Q

cokerκ ker ρ

κ

α

f ρ

β

ι

Proposition 2.32. Let A be an abelian category and let f : X → Y be a morphism in A.

1. f is a monomorphism iff ker f = 0. 1

2. f is an epimorphism iff coker f = 0.

3. f is an isomorphism iff it is a monomorphism and an epimorphism.

Proof. (1) Suppose f is a monomorphism. We will show that ker f is the terminal object.
Let κ : ker f → X be the canonical morphism, and let A be an object in A. Suppose
g : A→ ker f be a morphism, and consider the composition fκg : A→ Y .

A ker f X Y
g κ f

Since fκ = 0, fκg = 0. Then since f is mono, κg = 0, and since κ is mono, g = 0. Hence
there is only the zero morphism A→ ker f , so ker f is terminal, hence it is the zero object.

(2) Dual argument to (1).
(3) Clearly if f is an isomorphism it can be right- and left-cancelled, so it is mono and

epi. Conversely suppose f is mono and epi. Write f in terms of the canonical factorization

X im f Ye

f

m

Clearly if e and m are isomorphisms, then so is f . We will prove e is an isomorphism, the
argument for m is analogous. By construction, e is the cokernel of the kernel of f . By part
(1), f is mono. Obviously the composition

0 X X
IdX

is zero. So IdX factors through the im f . That is, there exists a unique morphism g : im f →
X such that ge = IdX .

0 X X

im f

e

IdX

g

Hence ege = e. Since we know e is epi, we can cancel it on the right, so eg = Idim f , which
means e, g are inverses, hence isomorphisms. As mentioned before, a similar/dual argument
shows m is an isomorphism. Hence f is an isomorphism.

1For this and the following parts, ker f = 0 means the object associated with the kernel/cokernel is the
zero object.
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2.3 Exact sequences

Definition 2.33. Let A be an abelian category, and suppose that in A we have morphisms
f : A→ B, g : B → C such that gf = 0.

A B C
f

0

g

We still have our canonical factorization of f through im f .

A B C

im f

f

e

g

m

So gf = gme = 0. Since e is epi, gm = 0. So m factors through ker g, which is to say, there
exists a unique map i : im f → ker g and the following diagram commutes.

A B C

im f ker g

f

e

g

m

i

κ

Given f, g as above such that gf = 0, we call i the canonical map from im f to ker g.

Definition 2.34. Let A be an abelian category. A sequence in A of the form

A B C
f

0

g

with gf = 0 is exact at B if the canonical map i : im f → ker g is an isomorphism. Similarly,
if

· · · → An−1 → An → An+1 → · · ·
is a sequence such that every sequential composition of two maps is zero, it is called exact if
every three-term subsequence is exact. A sequence as above where the index runs over Z is
called a long exact sequence. A short exact sequence is an exact sequence of the form

0→ A→ B → C → 0

Remark 2.35. A sequence 0 → A
f−→ B is exact if and only if f is a monomorphism.

Similarly, B
g−→ C → 0 is exact if and only if g is an epimorphism.

Definition 2.36. Let F : A → B be a covariant additive functor between abelian categories.

1. F is left exact if for any exact sequence 0 → A → B → C in A the sequence
0→ FA→ FB → FC is exact in B.

2. F is right exact if for any exact sequence A → B → C → 0 the sequence FA →
FB → FC → 0 is exact.
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3. F is exact if it is right and left exact.

Definition 2.37. Let F : A → B be an additive functor between abelian categories. Let
X, Y be objects in A. Then associated to F is a group homomorphism

HomA(X, Y )
F−→ HomB(FX,FY )

The functor F is faithful if this map is injective for all objects X, Y . F is full if this map
is surjective for all objects X, Y . F is fully faithful if it is both full and faithful.

Theorem 2.38 (Freyd-Mitchell Embedding Theorem). Let A be a small abelian category.
Then there exists a unital associative ring R and a fully faithful functor F from A to the
category of left R-modules. That is, A “embeds” in R-mod.

Remark 2.39. This theorem is useful even when dealing with abelian categories which are
not small. For example, when trying to prove some property of a commutative diagram in a
general abelian category, as long as the collection of objects involved in the diagram is not a
proper class, one can embed the subcategory of A consisting of those objects into a category
of R-modules using Freyd-Mitchell, and essentially treat the diagram as if it was over the
category of R-modules, for the purposes of doing diagram chases, etc.

However, one thing to watch out for is that a fully faithful functor as in the theorem
need not preserve injective or projective objects. Essentially, this is because injectives and
projectives depend on “global” properties of the category. So it is still important to be able
to work in a general abelian category when one wants to work with injective and projective
resolutions, for example.

One application of the Freyd-Mitchell embedding theorem is to transfer commonly known
facts about the category of R-modules to a general abelian category, especially when the
traditional proofs involve diagram chasing. On the other hand, it can be nice to work out
more “abstract” proofs of such things in the spirit of a general abelian category. For the
next two lemmas, we omit the abstract approach, just relying on Freyd-Mitchell and the
traditional result for the category of R-modules.

Lemma 2.40 (5-lemma). Suppose we have a commutative diagram in an abelian category
with exact rows.

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5

If f2, f4 are isomorphisms, f1 is epi, and f5 is mono, then f3 is an isomorphism.

Lemma 2.41 (Snake lemma). Suppose we have a commutative diagram in an abelian cate-
gory with exact rows.

A1 A2 A3 0

0 B1 B2 B3

f1 f2 f3

13



Then there exists a morphism ∂ : kerh→ ker f making an exact sequence

ker f1 → ker f2 → ker f3
∂−→ coker f1 → coker f2 → coker f3

Moreoever, if A1 → A2 is mono, then ker f1 → ker f2 is mono, and if B2 → B3 is epi, then
coker f2 → coker f3 is epi. That is, if the original diagram extends to a larger diagram with
exact rows as below,

0 A1 A2 A3 0

0 B1 B2 B3 0

f1 f2 f3

then the exact sequence extends to a larger exact sequence

0→ ker f1 → ker f2 → ker f3
∂−→ coker f1 → coker f2 → coker f3 → 0

2.4 Chain complexes

Definition 2.42. Let A be an abelian category. A cochain complex in A is a diagram

· · · → Ai−1
di−1
A−−→ Ai

diA−→ Ai+1 → · · ·

where i ∈ Z, and d2A = 0. That is, diad
i−1
A = 0 for all i ∈ Z. We denote such an object by

A• = (Ai, diA). The morphisms diA are called the differentials of A•. A chain complex
is the same, except the differentials decrease degree instead of increase. We’ll mostly focus
on cochain complexes, but the difference is immaterial. And actually, because I’m lazy, I’ll
probably just call both of them chain complexes when I feel like it.

Definition 2.43. Let A•, B• be cochain complexes. A morphism of cochain complexes
or chain map is a series of maps f i : Ai → Bi making an infinite commutative diagram
that looks sort of like a ladder.

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1di−1B Bi Bi+1 · · ·

di−1
A

f i−1

diA

f i f i+1

diB di+1
B

A chain map as above is denoted f •.

Definition 2.44. If A is a category, cochain complexes with objects from A along with
chain maps form a category denoted C(A). This is called the category of complexes in
A.

Definition 2.45. Let f •, g• : A• → B• be chain maps. A chain homotopy between f and
g is a collection of maps hi : Ai → Bi−1 such that

f i − gi = di−1B hi + hi+1diA ∀n ∈ Z

We include the following diagram (which is NOT commutative) to depict all the maps
involved in the equation above, and give some visual ideal of what is going on with a chain
homotopy.
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Ai−1 Ai Ai+1

Bi−1 Bi Bi+1

di−1
A

f i−1−gi−1

diA

f i−gi
hi

f i+1−gi+1

hi+1

diB di+1
B

The equation says that in the diagram above, going straight down from Ai to Bi via f i− gi
is the same as the sum of the two triangles involving the h maps.

Definition 2.46. Let A•, B• be chain complexes. A chain homotopy equivalence is a
chain map f • : A• → B• such that there exists a chain map g• : A• → B• and g•f • is chain
homotopic to IdA• and f •g• is chain homotopic to IdB• . In such a situation we say A•, B•

are chain homotopy equivalent, and say that f •, g• are homotopy psuedo-inverses.

Proposition 2.47. Let A be a category.

1. If A is additive, then C(A) is additive.

2. If A is abelian, then C(A) is abelian.

Proof. (1) Just a mostly tedious exercise.
(2) Also mostly a tedious exercise. Instead of a full proof, we give a construction of a

kernel in C(A). The basic idea is not surprising - just take the kernel at each step of a chain
map, and the resulting sequence of kernels forms a cochain complex which is the kernel in
C(A). The details take some working out, though, so we do that here.

Let f • : A• → B• be a chain map. Let κi : ker f i → Ai be the kernel at each step. We
know f iκi = 0, and then using the fact that f is a chain map,

0 = diBf
iκi = f i+1diAκ

i

Thus, diAκ
i factors through ker f i+1. That is, there exists a unique morphism diA,0 : ker f i →

ker f i+1 making the following diagram commute.

ker f i ker f i+1

Ai Ai+1

Bi Bi+1

κi

diA,0

κi+1

diA

f i f i+1

di+1
B

Also, since κi is a monomorphism, di+1
A,0d

i
A,0 = 0 for all i. Hence the stepwise kernels form

a complex, and it is immediate that κ• : ker f • → A• is a chain map. After doing this,
one should check that the complex constructed above satisfies the universal property of the
kernel in C(A), but this is tedious so we omit it.
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Remark 2.48. Suppose A is an abelian category. There is an exact, fully faithful functor
A → C(A) which takes an object X of A to the cochain complex with X in degree zero and
zeros elsewhere.

X  C(X) = · · · → 0→ X → 0→ · · ·

This functor takes a morphism f : X → Y to the obvious chain map C(X)→ C(Y ), which
is just f in degree zero.

· · · 0 X 0 · · ·

· · · 0 Y 0 · · ·

f

All unlabelled maps above are the zero map.

2.4.1 Cohomology of chain complexes

In the category of modules over a ring R, given a complex A•, we just define the cohomology
to be a certain quotient.

Hn(A•) :=
ker dnA

im dn−1A

For a more general abelian category setting, we need some more finesse, since quotients are
less clear. But essentially, a quotient is just a cokernel, so the following definition isn’t too
surprising.

Definition 2.49. Let A• be a cochain complex in an abelian category A. Since dnAd
n−1
A = 0,

we obtain a unique morphism in−1 : im dn−1A → ker dnA from the universal property of the
kernel. We define the nth cohomology object of A• to be the (object associated to) the
cokernel of in−1.

Hn(A•) := coker in−1

Definition 2.50. A complex A• is acyclic if Hn(A•) = 0 for all n. This is equivalent to A•

being exact.

Lemma 2.51 (Functoriality of Hn). Suppose f • : A• → B• is a chain map between com-
plexes with objects from an abelian category. Then f • induces morphisms

Hn(f •) : Hn(A•)→ Hn(B•)

If g• : B• → C• is another chain map, then

Hn(g• ◦ f •) = Hn(g•) ◦Hn(f •)

Hence Hn : C(A)→ A is an additive functor.

Proof. We just give a sketch of the construction of Hn(f •), and omit proof of the functoriality
and additvity. From the fact that f is a chain map, it induces fn0 : ker dnA → ker dnB and
fn1 : im dn−1A → im dn−1B making the following diagram commute.
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im dn−1A ker dnA

im dn−1B ker dnB

iA,n−1

fn1 fn0

iB,n−1

Let ρB,n : ker dnB → coker iB,n−1 = Hn(B•) be the associated canonical map of the cokernel.
Using the diagram above,

ρB,nf
n
0 iA,n−1 = ρB,niB,n−1f

n
1

Since ρB,n is the cokernel map of iB,n−1, the right side above is zero. Then the left side also
vanishes, implying that fn0 iA,n−1 factors through the cokernel, which is Hn(B•). That is,
there is a unique morphism Hn(f •) : Hn(A•) → Hn(B•) such that the following diagram
commutes.

im dn−1A ker dnA Hn(A•) = coker ρA,n

im dn−1B ker dnB Hn(B•) = coker ρB,n

iA,n−1

fn1 fn0

ρA,n

Hn(f•)

iB,n−1 ρB,n

Definition 2.52. Let f • : A• → B• be a chain map. It is a quasi-isomorphism if all
induced morphisms Hn(f •) are isomorphisms.

Remark 2.53. Let A be an abelian category. Consider a sequence

0→ A•
f•−→ B•

g•−→ C• → 0

in C(A). Since C(A) is abelian, we can speak of this sequence being exact (or not). It is a
short lemma to prove that the sequence above is exact (in C(A)) if and only if the associated
sequence

0→ An
fn−→ Bn gn−→ Cn → 0

is exact (in A) for every n.

Theorem 2.54 (LES in cohomology associated to SES of chain complexes). Let A be an
abelian category and suppose we have a short exact sequence in C(A).

0→ A•
f•−→ B•

g•−→ C• → 0

For each n, there exists a morphism ∂n : Hn(C•) → Hn+1(A•) making the following long
exact sequence in A.

· · · → Hn(A•)
Hn(f•)−−−−→ Hn(B•)

Hn(g•)−−−−→ Hn(C•)
∂n−→ Hn+1(A•)

Hn+1(f•)−−−−−→ Hn+1(B•)→ · · ·

Proof. Essentially we apply the snake lemma twice. We just sketch the argument. First, we
have the commutative diagram below which has exact rows, for every i.

17



0 Ai Bi Ci 0

0 Ai+1 Bi+1 Ci+1 0

diA

f i

diB

gi

diC

f i+1 f i+1

Applying the snake lemma to this, we obtain two exact sequences (ignoring the connecting
homomorphism).

0→ ker diA → ker diB → ker diC coker diA → coker diB → coker diC → 0

Using the fact that d2 = 0 and some universal properties, the differential maps from
A•, B•, C• induce maps d̃nA, d̃

n
B, d̃

n
C fitting into the following commutative diagram, which

has exact rows by the previous application of the snake lemma.

coker dn−1A coker dn−1B coker dn−1C 0

0 ker dn+1
A ker dn+1

B ker dn+1
C

d̃nA d̃nB d̃nC

Also, one can check that Hn(A•) ∼= ker d̃nA. So applying the snake lemma to the above, we
get the required long exact sequence.

2.4.2 Translation and truncation

Fix an abelian category A.

Definition 2.55.

1. A complex A• is bounded below if there exists N ∈ Z such that Ai = 0 for all i < N .
Complexes which are bounded below form a full subcategory C+(A) of C(A).

2. A complex A• is bounded above if there exists N ∈ Z such that Ai = 0 for all i > N .
Complexes which are bounded above form a full subcategory C−(A) of C(A).

3. A complex A• is bounded if it is bounded both above and below. Complexes which
are bounded form a full subcategory Cb(A) of C(A).

Definition 2.56. The translation functor T : C(A) → C(A) sends a complex A• =
(Ai, diA) to another complex T (A•) = (T (A•)i, diT (A•)) defined by

T (A•)i = Ai+1 diT (A•) = −di+1
A

Essentially, T translates the complex left by one degree. The negative sign in on the trans-
lated differentials is just a convention which will be useful later when dealing with cones of
morphisms. On a chain map f • : A• → B•, the functor T outputs the chain map

T (f •) : T (A•)→ T (B•) T (f •)i = f i+1
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For situations in which we apply the translation functor repeatedly, we define

A•[n] := T n(A•)

which gives a convenient way to describe shifting A to the left by an arbitrary number of
degrees.

Remark 2.57. Taking cohomology commutes with translation, which is to say, Hn(T (A•)) =
Hn+1(A•).

Definition 2.58. Let A• be a complex with objects from the abelian category A, and fix
n ∈ Z. The right truncation of A• at n is the complex τ≤n(A•) defined by

τ≤n(A•)i =


Ai i < n

ker diA i = n

0 i > n

Diagrammatically it looks like

· · · → Ai−2
di−2
A−−→ Ai−1

d̂i−1
A−−→ ker diA → 0→ · · ·

The morphism d̂i−1A is induced by the universal property of the kernel using diAd
i−1
A = 0.

There is a canonical momorphism ι• : τ≤n(A•) → A•. This is the identity in degrees < n,
zero in degrees > n, and the canonical morphism κ associated to the kernel in degree n.

· · · Ai−2 Ai−1 ker diA 0 · · ·

· · · Ai−2 Ai−1 Ai Ai+1 · · ·

Id

di−2
A

Id

d̂i−1
A

κ 0

di−2
A di−1

A
diA

Furthermore, ι• induces isomorphisms on cohomology for degrees ≤ n.

H i(ι•) : H i(τ≤n(A•))
∼=−→ H i(A•) ∀i ≤ n

If f • : A• → B• is a chain map, then as previously discussed we get an induced map
fn0 : ker dnA → ker dnB which we use to obtain a chain map τ≤n(f •) : τ≤n(A•)→ τ≤n(B•).

τ≤n(f •) =


f i i < n

f i0 i = n

0 i > n

Hence τ≤n gives a covariant functor C(A) → C(A). Even better, the image lands in the
category C−(A) of complexes bounded above.

τ≤n : C(A)→ C−(A)
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Definition 2.59. The left truncation of A• at n is the complex τ≥n(A•) defined by

τ≥n(A•)i =


0 i < n

coker di−1A i = n

Ai i > n

Diagrammatically it looks like

· · · → 0→ coker di−1A

d̂iA−→ Ai+1 di+1
A−−→ Ai+2 → · · ·

The morphism d̂iA is induced by the universal property of the cokernel using diAd
i−1
A = 0.

There is a canonical epimorphism q• : A• → τ≥n(A•). This is zero in degrees < n, the
identity in degrees > n, and the canonical morphism ρ associated to the cokernel in degree
n.

· · · Ai−1 Ai Ai+1 Ai+2 · · ·

· · · 0 coker di−1A Ai+1 Ai+2 · · ·

di−1
A

0

diA

ρ

di+1
A

Id Id

d̂iA
di+1
A

Furthermore, q• induces isomorphisms on cohomology for degrees ≥ n.

H i(q•) : H i(A•)
∼=−→ H i(τ≥n(A•)) ∀i ≥ n

If f • : A• → B• is a chain map, then as previously discussed we get an induced map fn1 :
coker dn−1A → coker dn−1B which we use to obtain a chain map τ≥n(f •) : τ≥n(A•)→ τ≥n(B•).

τ≥n(f •) =


0 i < n

f i1 i = n

f i i > n

Hence τ≥n gives a covariant functor C(A) → C(A). Even better, the image lands in the
category C+(A) of complexes bounded below.

τ≤n : C(A)→ C+(A)

2.4.3 Cone of a morphism

As always, A is a fixed abelian category.

Definition 2.60. Let f • : X• → Y • be a morphism in C(A). The cone of f • is a chain
complex C•f = (Cn

f , d
n
Cf

) which we now describe. The objects are

Cn
f := X[1]n ⊕ Y n = Xn+1 ⊕ Y n
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and the differentials are

dnCf
: Cn

f → Cn+1
f dCf

=

(
dX•[1] 0
f •[1]n dnY

)
=

(
−dn+1

X 0
fn+1 dnY

)
The matrix notation is slightly abusive, but it is at least clear what this means if A is a
category of R-modules. In this case, we can write an element of Xn+1 ⊕ Y n as a “column

vector”

(
x
y

)
and dCf

acts on the left in the usual way matrices act on column vectors.

dCf

(
x
y

)
=

(
−dn+1

X 0
fn+1 dnY

)(
x
y

)
=

(
−dn+1

X (x)
fn+1(x) + dnY (y)

)
This makes sense because fn+1 and dnY both map into Y n+1, where we can add their images
(as Y n+1 is a module over a ring R). The matrix notation also works in a general abelian
category, just be careful to understand things in terms of the categorical biproduct instead
of in terms of elements.

A quick matrix calculation shows that d2Cf
= 0, hence C•f is a chain complex as claimed.(

−dn+2
X 0

fn+2 dn+1
Y

)(
−dn+1

X 0
fn+1 dnY

)
=

(
dn+1
X dn+2

X dnY d
n+1
Y

−fn+2dn+1
X + dn+1

Y fn+1 dn+1
Y dnY

)
=

(
0 0
0 0

)
The top row and bottom right are clearly zero since X•, Y • are complexes. The bottom left
entry vanishes because f is a chain map.

Definition 2.61. Let f • : X• → Y • be a chain map, with cone C•f . For n ∈ Z, let

ιnf = 0⊕ IdYn : Y n → Cn
f

and let

ρnf : Cn
f → X[1]n

be the canonical projection. Then one can verify that these give chain maps

ι•f : Y • → C•f

ρ•f : Cf → X•[1]

Remark 2.62. The chain maps ι•f , ρ
•
f fit into a short exact sequence of complexes

0→ Y •
ι•f−→ C•f

ρ•f−→ X•[1]→ 0

which induces a long exact sequence on cohomology

· · · → Hn(C•f )→ Hn(X•[1])
∂n−→ Hn+1(Y •)→ Hn+1(C•f )→ · · ·

Recall that Hn(X•[1]) = Hn+1(X). Tracing through the construction of the connecting map
∂n in the snake lemma, we see that it is just the morphism induced on cohomology by f .
That is,

∂n = Hn+1(f) : Hn+1(X•)→ Hn+1(Y •)
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Proposition 2.63. Let f • : X• → Y • be a chain map with cone C•f . Then f • is a quasi-
isomorphism if and only if C•f is acyclic.

Proof. Use the long exact sequence from the previous remark. C•f is acyclic if and only
every third term vanishes, which is equivalent to all the connecting homomorphisms being
isomorphisms. But these connecting homomorphisms are exactly the morphisms induced on
cohomology by f .

2.5 Derived functors - classical definition

2.5.1 Injective and projective objects

Fix an abelian category A.

Definition 2.64. Recall that the contravariant functor HomA(−, X) from A to abelian
groups is left exact. An object I in A is injective if HomA(−, I) is exact.

Definition 2.65. Recall that the covariant functor HomA(X,−) is right exact. An object
P is projective if HomA(P,−) is exact.

Remark 2.66. Suppose A is the category of modules over a commutative ring R, and let
M be an R-module.

1. If R is a PID, then M is injective if and only if it is divisible.

2. M is projective if and only if it is a direct summand of a free module.

Definition 2.67. A has enough injectives if for any object X, there is an injective object
I and a monomorphism X → I.

Definition 2.68. A has enough projectives if for any object X, there is a projective
object P and an epimorphism P → X.

Example 2.69. The category of R-modules has enough projectives and enough injectives.

Definition 2.70. An injective resolution of an object X is an exact sequence

0→ X → I0 → I1 → · · ·

where In is injective for every n. We can also denote such a resolution by 0→ X → I•.

Proposition 2.71. Let A be an abelian category with enough injectives.

1. Every object in A has an injective resolution.

2. Suppose 0 → X → M• is a long exact sequence and 0 → Y → I• is an injective
resolution of Y . Then any morphism f : X → Y extends to a chain map

0 X M0 M1 · · ·

0 Y I0 I1 · · ·

f
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Moreover, any two such extensions are chain homotopic.

3. (Horseshoe lemma) Let 0→ X → Y → Z → 0 be a short exact sequence in A. Given
injective resolutions 0→ X → I• and 0→ Z → K•, there exists an injective resolution
0→ Y → J• of Y fitting into a short exact sequence of complexes as depicted below.

0 0 0

0 X Y Z 0

0 I0 J0 K0 0

0 I1 J1 K1 0

...
...

...

In fact, one can take Jn = In ⊕Kn.

Proof. Omitted, proven in various introductory notes or texts on homological algebra.

Remark 2.72. It follows from part 2 of the proposition that if I•1 , I
•
2 are two injective

resolutions of an object, then 0→ A→ I•1 and 0→ A→ I•2 are chain homotopy equivalent
complexes. Just apply the extension property to the identity A→ A both ways.

Remark 2.73. Part 3 of the previous proposition is known as the “Horseshoe lemma” for
the shape of the diagram (before filling in the J terms, and omitting the zeros).

Remark 2.74. In part 3 of the proposition, the fact that Jn = In ⊕Kn has the following
consequence. If F : A → B is an additive functor, then it commutes with direct sums, so it
takes split exact sequences to split exact sequences. In particular, since

0→ In → Jn → Kn → 0

is split exact, the sequence

0→ FIn → FJn → FKn → 0

is also split exact. The split part is not so important, the emphasis here is that the resulting
sequence is exact.

Remark 2.75. Let A be an object of A, and let 0→ A
i0−→ I• be an injective resolution of

A. Then we have a morphism of complexes C(A)→ I•.

· · · 0 A 0 0 · · ·

· · · 0 I0 I1 I2 · · ·

i0
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Even better, this is a quasi-isomorphism. This allows us to rephrase the fact that injective
resolutions exist. This says that existence of an injective resolution of A is equivalent to the
existence in C(A) of a complex consisting of injective objects which is quasi-isomorphic to
C(A).

2.5.2 Derived functor construction

We now describe the classical (and somewhat ad hoc) approach to defining and calculating
derived functors.

Definition 2.76. Let A,B be abelian categories, and assume A has enough injectives. Let
F : A → B be a left exact (additive, covariant) functor. Given an object A of A, choose an
injective resolution 0 → A → I•. Apply F to this resolution and truncate the A term. We
obtain a complex

0→ FI0 → FI1 → FI2 → · · ·

Then for n ≥ 0, we define the nth right derived functor of F by

RnF (A) := Hn(FI•)

Then RnF is an additive covariant functor A → B.

Remark 2.77. The previous construction has the following important properties.

1. While the definition RnF (A) = Hn(FI•) appears to depend on the choice of injective
resolution, it does not. This follows from 2.71. More precisely, it follows from remark
2.72, which says that injective resolutions of an object A are chain homotopy equivalent.

2. R0F (A) = F (A) since F is left exact.

3. If I is injective, then RnF (I) = 0 for n ≥ 1, using the injective resolution 0 → I →
I → 0.

4. A short exact sequence 0→ A→ B → C → 0 in A yields a long exact sequence

0→ R0FA→ R0FB → R0FC →→ R1FA→ R1FB → R1FC → R2FA→ · · ·

This comes from applying 2.54 to the short exact sequence of complexes obtained in
part 3 of 2.71. An important step is that since F is additive, it preserves coproducts,
and the obtained resolution of B is the term-by-term coproduct.

Remark 2.78. All of this dualizes to projective resolutions and left derived functors, but
we omit the details.
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2.6 Homotopy category of complexes

2.6.1 Definitions

Next we define the homotopy category K(A). It will have the same objects as C(A), but
the hom sets are quotients of the C(A) hom sets.

Definition 2.79. A chain map is nullhomotopic if it is chain homotopic to the zero chain
map. Explicitly, f • : A• → B• is nullhomotopic if there exist maps hn : An → Bn−1 such
that

fn = hn+1dnA + dn−1B hn

Note that f •, g• : A• → B• are chain homotopic if and only if f • − g• is nullhomotopic.

Definition 2.80. Let A be an abelian category. The homotopy category of complexes,
denoted K(A), is the category whose objects are the same as objects of C(A), and whose
morphism are given by

HomK(A)(A
•, B•) := HomC(A)(A

•, B•)/G

where G is the subgroup of nullhomotopic chain maps.

We haven’t yet established that the nullhomotopic chain maps form a subgroup, so the
lemma takes care of this, and shows that composition in K(A) is well defined.

Lemma 2.81. Let A be an abelian category.

1. Let f • : X• → Y • and g• : Y • → Z• be chain maps. If f • or g• is nullhomotopic, then
so is g•f •.

2. If f • : X• → Y • is nullhomotopic, then Hn(f •) = 0 for all n. Consequently, any chain
homotopy equivalence is a quasi-isomorphism.

Proof. (1) Suppose f is nullhomotopic. Then there is hn : Xn → Y n−1 such that

fn = hn+1dnX + dn−1Y hn

Then
gnfn = gnhn+1dnX + gndn−1Y hn = gnhn+1dnX + dn−1Z gn−1hn

so gn−1hn gives a chain homotopy between g•f • and the zero morphism. A similar argument
shows that if g• is nullhomotopic, then g•f • is nullhomotopic.

(2) Apply the Freyd-Mitchell embedding theorem and use the usual argument for R-
modules.

Remark 2.82. Part (1) of the lemma says that composition is the homotopy category K(A)
is well defined, since the choice of homotopy class representative doesn’t impact composition.

Remark 2.83. K(A) is not, in general, an abelian category. We will prove this later, with
examples. The remedy/approximation for this will be that K(A) is a triangulated category.
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2.6.2 Translation and truncation

Lemma 2.84. If f • : X• → Y • is nullhomotopic, then so is T (f •) : T (X•)→ T (Y •). More
generally, if f •, g• are chain homotopic, then so are T (f •), T (g•).

Proof. Just translate the homotopy maps by one degree.

Remark 2.85. The previous remark says that the translation functor T : C(A) → C(A)
induces a translation functor T : K(A)→ K(A).

Definition 2.86. The homotopy category has bounded subcategoriesK+(A), K−(A), Kb(A)
which are defined analogously to C+(A), C−(A), Cb(A).

Lemma 2.87. Let n ∈ Z. If f • : X• → Y • is nullhomotopic, then τ≤n(f •) is also nullho-
motopic.

Proof. Let κnX : ker dnX → Xn, κnY : ker dnY → Y n be the canonical maps associated with the
kernel. The chain map τ≤n(f •) in C(A) looks like this.

· · · Xn−2 Xn−1 ker dnX 0 · · ·

· · · Y n−2 Y n−1 ker dnY 0 · · ·

fn−2

d̂n−1
X

fn−1 fn0 0

d̂n−1
Y

where κnY f
n
0 = fnκnX , and κnY d̂

n−1
Y = dn−1Y .

ker dnX Xn Y n−1

ker dnY Y n ker dnY Y n

κnX

fn0 fn dn−1
Y

d̂n−1
Y

κnY κnY

Since f • is nullhomotopic, there exist maps hk : Xk → Y k−1 such that

fk = hk+1dkX + dk−1Y hk ∀k ∈ Z

We define

hkτ =


hk k < n

hnκnX k = n

0 k > n

You can think of the composition hnκnX as a “restriction” hn|ker dnX . We claim that the maps
hkτ give a nullhomotopy of τ≤n(f •). This is immediate in degrees other than n, so we only
need to check it in degree n.

· · · Xn−2 Xn−1 ker dnX 0 · · ·

· · · Y n−2 Y n−1 ker dnY 0 · · ·

hn−1 hnκnX
0

0
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Then we need to verify

fn0
?
= hn+1

τ ◦ 0 + d̂n−1Y ◦ hnτ
We start by composing fn0 with κnY on the left, then use our various properties.

κnY f
n
0 = fnκnX construction of fn0

=
(
hn+1dnX + dn−1Y hn

)
κnX nullhomotopy of f

= hn+1dnXκ
n
X + dn−1Y hnκnX distributivity

= dn−1Y hnκnX dnXκ
n
X = 0 by definition of kernel

= κnY d̂
n−1
Y hnκnX construction of d̂n−1Y

Finally, since κnY is a monomorphism, we can left cancel it, and obtain the needed equality.

fn0 = d̂n−1Y hnκnX = hn+1
τ ◦ 0 + d̂n−1Y ◦ hnτ
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3 Triangulated categories

In some ways, being a triangulated category is a “weaker” requirement than being abelian,
but really, they are just orthogonal. Neither abelian nor triangulated implies the other, and
eventually we can show that having both properties is extremely restrictive, so in some sense
“most” abelian categories are not triangulated, and “most” triangulated categories are not
abelian.

Triangulated categories take a different approach than abelian categories to having some-
thing akin to short exact sequences. Instead of kernels and cokernels and strict morphisms,
triangulated categories bypass these notions and start out with “distinguished triangles,”
which function in many ways like exact sequences. Since there are not necessarily kernels
and cokernels, we cannot speak of exactness per se, so this is the replacement.

Informally, a triangulated category is an additive category with a translation functor and
a family of distinguished triangles satisfying some axioms.

3.1 Axioms for a triangulated category

Definition 3.1. Let C be an additive category. A translation functor on C is an auto-
morphism2 T : C → C. When we have such a T , we notate things as

T n(X) = X[n] n ∈ Z

and if f : X → Y is a morphism,

T n(f) = f [n] : X[n]→ Y [n]

Definition 3.2. Let C be a category with a translation functor. A triangle in C is a diagram

X → Y → Z → X[1]

Note that there are no assumptions regarding “exactness,” since this would not even have a
clear meaning. A triangle is sometimes represented

Z

X Y

[1]

Such a diagram can be misleading if taken too literally - there is no actual morphism Z → X,
which is why the arrow is decorated with a [1]. This label is not a name of a morphism, it
indicates a morphism Z → X[1].

Definition 3.3. Let C be a category with a translation functor. A morphism of triangles
is a commutative diagram

2Automorphism is much stronger than an equivalence of categories with itself. An automorphism means
there is an inverse functor T−1 : C → C such that TT−1 and T−1T are both the identity functor on C.
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X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

u v w u[1]

A morphism of triangles is an isomorphism of triangles if u, v, w are all isomorphisms.

Definition 3.4. A triangulated category is an additive category C which is equipped
with a translation functor T : C → C (also denoted [1]) and a family of triangles called
distinguished triangles satisfying the following axioms.

(TR1a) For any object X, the triangle X
Id−→ X → 0→ X[1] is distinguished.

(TR1b) Any triangle isomorphic to a distinguished triangle is distinguished.

(TR1c) Any morphism X
f−→ Y can be complete to a distinguished triangle

X
f−→ Y

g−→ Z
h−→ X[1]

The resulting object Z is sometimes called the cone of f . 3

(TR2) (Rotation axiom) A triangle

X
u−→ Y

v−→ Z
w−→ X[1]

is distinguished if and only if

Y
v−→ Z

w−→ X[1]
−u[1]−−−→ Y [1]

is distinguished. (This second triangle is called the rotated triangle.)

(TR3) Suppose we have the following diagram with distinguished rows, and the left square
commutes.

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g f [1]

Then this can be completed to a morphism of triangles. That is, there exists a mor-
phism h : Z → Z ′ (not necessarily unique) making the following diagram commute.

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h f [1]

3Note that we do not assume Z is unique, but can eventually show that Z is unique up to isomorphism,
see Remark 3.20. However, Z is not unique up to unique isomorphism, so there is no canonical choice of Z,
nor is there a canonical choice of isomorphism Z ∼= Z ′ given two such completions.
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(TR4) (Octahedral axiom) Suppose we have the following diagram with distinguised rows,
and the two squares on the left commute (gf = h).

X Y Z ′ X[1]

X Z Y ′ X[1]

Y Z X ′ Y [1]

f

IdX

a

g IdX [1]=IdX[1]

h

f

b

IdZ f [1]

g c

Then this can be completed to two morphisms of triangles. That is, there exist mor-
phisms u : Z ′ → Y ′ and v : Y ′ → X ′ and w : X ′ → Z ′[1] making the whole diagram
commute, so that the bottom row is also distinguished.

X Y Z ′ X[1]

X Z Y ′ X[1]

Y Z X ′ Y [1]

Z ′ Y ′ X ′ Z ′[1]

f

IdX

a

g u IdX [1]=IdX[1]

h

f

b

IdZ v f [1]

g

a

c

b IdX′ a[1]

u v w

Remark 3.5. The name “rotation axiom” for (TR2) comes from the following picture.

Z X[1]

X Y Y Z

[1]

w

[1]

−u

u

v

v

[1]

w

The rotation axiom is telling us that we can take a distinguished triangle as on the left and
“rotate” it counterclockwise to obtain a new distinguished triangle, on the right. Since the
statement is if and only if, it also includes the case of rotating clockwise.

Remark 3.6. The name “octahedral axiom” for (TR4) comes from the following picture.
If you understand what’s going on in this picture, then you’re smarter than I am.

Y ′

Z ′ X ′

X Z

Y

v

c

u

a

w

[1]

[1]

[1]

f

h

c

b

g
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Definition 3.7. A category with a translation functor and family of distinguished triangles
satisfying axioms (TR1a), (TR1b), (TR1c), (TR2), (TR3), is called pre-triangulated.

Remark 3.8. It is an open research question whether there exists a category which is pre-
triangulated but not triangulated. That is to say, we do not know if (TR4) is a consequence
of the other axioms. The general consensus seems to be that it is not, and to prove this, one
would just need to find a pre-triangulated category in which (TR4) fails. However, no such
category is known.

Definition 3.9. Let C,D be triangulated categories, with translation functors TC, TD, and
let F : C → D be an additive functor. F commutes with translation if there is a natural
isomorphism of functors η : FTC

∼=−→ TDF . That is, for every object X of C, there is an
isomorphism

ηX : FTCX
∼=−→ TDFX

and if f : X → Y is a morphism in C, the following diagram commutes.

FTCX TDFX

FTCY TDFY

ηX
∼=

FTCf TDFf

ηY
∼=

If we use [1] to denote translation in both C,D, then we would notate this as

F (X[1]) (FX)[1]

F (Y [1]) (FY )[1]

ηX
∼=

F (f [1]) (Ff)[1]

ηY
∼=

Definition 3.10. Let F : C → D be an additive functor. F is triangulated or exact if it
commutes with translation and takes distinguished triangles to distinguished triangles. That
is, if

X
u−→ Y

v−→ Z
w−→ X[1]

is a distinguished triangle in C, then

FX
Fu−→ FY

Fv−→ FZ
ηXFw−−−→ (FX)[1]

is a distinguished triangle in D.
Note that without the natural isomorphism η, the resulting sequence after applying

F would not even be a triangle, so it wouldn’t make any sense to talk about it being
distinguished. Without η the image of X → Y → Z → X[1] would be FX → FY →
FZ → F (X[1]), and then there’s no reason to expect any relationship between F (X[1]) and
(FX)[1], except that we assumed F commutes with translation.

Definition 3.11. Let C,D be triangulated categories, and let F,G : C → D be exact
functors. Let ηF : FTC → TDF and ηG : GTC → TDG be the associated natural isomorphisms
from the fact that F,G each commute with translation. A natural transformation ω : F → G
is graded if the following diagram commutes for every X ∈ ob(C).
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FTCX TDFX

GTCX TDGX

ηF,X

∼=
ωTCX TDωX

ηG,X

∼=

Remark 3.12. If ω : F → G is a graded natural transformation as above, then for any
distinguished triangle X → Y → Z → X[1] in C, there is a commutative diagram

FX FY FZ FTCX TDFX

GX GY GZ GTCX TDGX

ωX ωY ωZ

ηF,X

ωTCX TDωX

If we collapse the rightmost square, this becomes a morphism of distinguished triangles.

FX FY FZ TDFX

GX GY GZ TDGX

ωX ωY ωZ TDωX

3.2 Some properties of triangulated categories

Proposition 3.13. If X
u−→ Y

v−→ Z
w−→ X[1] is a distinguished triangle, then vu = 0 and

wv = 0.

Proof. It is enough to prove that vu = 0, since then wv = 0 follows by applying the rotation

axiom (TR2). We know that Z
Id−→ Z → 0→ Z[1] is distinguished by (TR1a). And we have

the following diagram with distinguished rows, and the left square is clearly commutative.

Y Z X[1] Y [1]

Z Z 0 Z[1]

v

v

w

Id

−u[1]

v[1]

Id

Thus by (TR3), there is a morphism X[1] → 0 which completes this to a morphism of
triangles. Obviously, the only morphism it could be is the zero morphism.

Y Z X[1] Y [1]

Z Z 0 Z[1]

v

v

w

Id

−u[1]

v[1]

Id

But we still get useful information, since it tells us that the right square commutes, that is,

v[1] ◦ −u[1] = 0 =⇒ vu = 0

since [1] is an automorphism.
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Proposition 3.14. If X
u−→ Y

v−→ Z
w−→ X[1] is a distinguished triangle, then any change of

sign for exactly two of u, v, w is still a distinguished triangle.

Proof. This is immediate from (TR1b) using a diagram such as the following.

X Y Z X[1]

X Y Z X[1]

u

Id

v

− Id

w

Id Id

−u −v w

Definition 3.15. Let C be any category (not even necessarily additive). Let f : A → B
be a morphism and U any object. We denote the induced maps on Hom-sets by f∗ and f ∗

respectively.

f∗ : HomC(U,A)→ HomC(U,B) f∗φ = fφ = f ◦ φ
f ∗ : HomC(B,U)→ HomC(A,U) f ∗ψ = ψf = ψ ◦ f

The next result gives a strong backing to the philosophical idea that distinguished triangles
behave a lot like short exact sequences of complexes - they induce long exact sequences of
abelian groups in a similar way to how the snake lemma is used to get a long exact sequence
from a short exact sequence of complexes.

Proposition 3.16. Let X
u−→ Y

v−→ Z
w−→ X[1] be a distinguished triangle in a triangulated

category C, and let U be any object of C. Then the following are long exact sequences of
abelian groups.

· · · Hom(U,X[i]) Hom(U, Y [i]) Hom(U,Z[i]) Hom(U,X[i+ 1]) · · ·

· · · Hom(X[i], U) Hom(Y [i], U) Hom(Z[i], U) Hom(X[i+ 1], U) · · ·

u[i]∗ v[i]∗ w[i]∗

u[i]∗ v[i]∗ w[i]∗

Proof. We’ll just prove exactness for the first sequence, since the proof for the other is
analogous. Because of the rotation axiom (TR2), it suffices to prove exactness at a single
term. So we just need to show that

Hom(U,X[i])
u[i]∗−−→ Hom(U, Y [i])

v[i]∗−−→ Hom(U,Z[i])

is exact at the middle term. By proposition 3.13, vu = 0, so v[i] ◦ u[i] = 0 so imu[i]∗ ⊂
ker v[i]∗. We just need to establish the reverse inclusion. Suppose f ∈ ker v[i]∗, so f ◦v[i] = 0.
We need to find a g : U → X[i] such that f = u[i]∗g = u[i] ◦ g. Using (TR1a) and (TR2) we
have the following diagram with distinguished rows.

U [−i] 0 U [−i+ 1] U [−i+ 1]

Y Z X[1] Y [1]

f [−i]

− Id

f [−i+1]

v w −u[1]
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The left square clearly commutes, so by (TR3) there is a morphism h completing this to a
morphism of triangles.

U [−i] 0 U [−i+ 1] U [−i+ 1]

Y Z X[1] Y [1]

f [−i]

− Id

h f [−i+1]

v w −u[1]

That is,
−f [−i+ 1] = −u[1] ◦ h =⇒ f = u[i] ◦ h[−i+ 1]

so we can take g = h[−i + 1], and then f = u[i]∗(h) so f ∈ imu[i]∗. Thus the sequence is
exact.

Remark 3.17. The proof of proposition 3.16 did not utilize (TR4), so it holds in pre-
triangulated categories as well. This will be true of most of the following results as well, so
we’ll stop mentioning it.

Corollary 3.18 (Triangulated 5-lemma). Suppose we have a morphism of distinguished
triangles.

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h

If two of f, g, h are isomorphisms, then the third is also.

Proof. Because of the rotation axiom (TR2), it suffices to prove the case where f, g are
isomorphisms. We apply proposition 3.16 in the case U = Z ′ to both rows, and get two long
exact sequences, which are connected by vertical maps induced by f, g, h.

Hom(Z ′, X) Hom(Z ′, Y ) Hom(Z ′, Z) Hom(Z ′, X[1]) Hom(Z ′, Y [1])

Hom(Z ′, X ′) Hom(Z ′, Y ′) Hom(Z ′, Z ′) Hom(Z ′, X ′[1]) Hom(Z ′, Y ′[1])

f∗ g∗ h∗ f [1]∗ g[1]∗

Note that this diagram is commutative simply because Hom(Z ′,−) is a functor. The rows
are exact by 3.16. By assumption, f, g are isomorphisms, so f∗, g∗, f [1]∗, g[1]∗ are also iso-
morphisms. So by the 5-lemma, h∗ is an isomorphism. Thus there is a map α : Z ′ → Z such
that h∗(α) = hα = IdZ′ , that is, α is a right inverse for h.

We omit the details, but using the same diagrammatic argument using U = Z instead,
one can obtain a left inverse β for h. Then it follows formally that α = β is a two-sided
inverse for h, so h is an isomorphism.

Remark 3.19. The proof for the triangulated 5-lemma above does not depend on the
octahedral axiom, so it holds in pre-triangulated categories as well.
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Remark 3.20. By (TR1c), any morphism u : X → Y can be completed to a distinguished
triangle X

u−→ Y
v−→ Z

w−→ X[1]. There is no assumption of uniqueness for Z, but we can
now establish that Z is actually unique up to non-canonical isomorphism. More precisely,

suppose X
u−→ Y

v−→ Z
w−→ X[1] and X

u−→ Y
v′−→ Z ′

w′−→ X[1] are both completions from
(TR1c). Then by (TR3), there is a morphism h : Z → Z ′ making a morphism of triangles.

X Y Z X[1]

X Y Z ′ X[1]

IdX IdY h IdX [1]=IdX [1]

Then by Corollary 3.18, h is an isomorphism. So it is somewhat reasonable to speak of “the
cone” of u as the (isomorphism class of the) object Z. Despite this, there is no canonical
representative for Z, and the morphisms v, w are only determined up to automorphisms of
Z, and there is no canonical choice of h.

Corollary 3.21. Let X
u−→ Y

v−→ Z
w−→ X[1] be a distinguished triangle. Then u is an

isomorphism if and only if Z = 0.

Proof. We know that vu = 0, so we have a commutative diagram below with distinguished
rows.

X X 0 X[1]

X Y Z X[1]

Id

Id u Id

u v w

If Z = 0, then the third vertical arrow is an isomorphism, which implies that u is an
isomorphism by 3.18. Conversely, if u is an isomorphism, then 0 → Z is an isomorphism
again by 3.18.

Definition 3.22. Let C be a triangulated category and A an abelian category. An additive
covariant functor H : C → A is cohomological if for every distinguished triangle

X
u−→ Y

v−→ Z
w−→ X[1]

in C, the sequence

HX
Hu−−→ HY

Hv−→ HZ

is exact in A.

Lemma 3.23. Let H : C → A be a cohomological functor. Then for every distinguished
triangle

X
u−→ Y

v−→ Z
w−→ X[1]

the sequence below is exact.

· · · → H(X[i])
H(u[i])−−−−→ H(Y [i])

H(v[i])−−−−→ H(Z[i])
H(w[1])−−−−→ H(X[i+ 1])→ · · ·
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Proof. Immediate from the definition combined with the rotation axiom (TR2).

Example 3.24. We showed in proposition 3.16 that HomC(U,−) : C → AbGp is cohomo-
logical for any triangulated category C and any object U .

Remark 3.25. Later after we show K(A) is triangulated, we’ll show that H0 : C(A)→ A
induces a functor H0 : K(A)→ A which is cohomological.

3.3 Semisimplicity

3.3.1 Semisimple rings and modules

Before we define semisimple abelian categories, we motivate the definition with a discussion
of semisimple rings and semisimple modules. Mild warning: Zorn’s lemma is used several
times in the proofs in this section. If that’s scary or you have some sort of philosophical
objection, I don’t know what to tell you. Deal with it.

Definition 3.26. Let A be an associative unital ring. A left A-module M is simple if it is
nonzero and has no submodules other than 0 and itself.

Definition 3.27. Let A be an associative unital ring. A left A-module M is semisimple
if for every submodule N ⊂ M , there exists a submodule N ′ ⊂ M such that M = N ⊕N ′.
We call such an N ′ an orthogonal complement of N .

Remark 3.28. A simple module is semisimple (in a vacuous way).

Lemma 3.29. Let A be an associative unital ring and let M be a semisimple left A-module.
Then

1. Every submodule and quotient and quotient of M is semisimple.

2. If M 6= 0, then M contains a nonzero simple submodule.

3. Every x ∈M is contained in a nonzero simple submodule of M .

Proof. (1) Let L ⊂ M be a submodule, and let N ⊂ L be a submodule of L. Since M is

semisimple, there is a submodule N ′ ⊂ M so that N ⊕ N ′ = M . Then take N̂ ′ = N ′ ∩ L,
and

N ⊕ N̂ ′ = N ⊕ (N ′ ∩ L) = (N ⊕N ′) ∩ (N ∩ L) = M ∩ L = L

so L is semisimple. Regarding quotients, we know that there is a submodule L so that
M = L⊕ L′, so

M/L ∼= L′

but L′ ⊂ M is a submodule, so by the previous argument L′ is semisimple. Hence the
quotient M/L is semisimple.

(2) Since M 6= 0, there exists x ∈ M,x 6= 0. Consider the family of nonzero proper
submodules

S = {N ⊂M : N 6= M,x 6∈ N}
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Since M is not simple, S is not empty. S is partially ordered by inclusion, and we claim that
every chain in S has an upper bound. Let

N1 ⊂ N2 ⊂ N3 ⊂ . . .

be a chain in S. Then ⋃
i

Ni

is a submodule of M which does not contain x, so it in S. Thus by Zorn’s lemma, S has a
maximal element Ñ . Since M is semisimple, there is a submodule which is an orthogonal
complement to Ñ , that is, there is Ñ ′ so that M = Ñ ⊕ Ñ ′. We claim Ñ ′ is simple. Since
x ∈ Ñ and Ñ is a proper submodule, Ñ ′ is nonzero.

Suppose Ñ ′ contains a nonzero proper submodule L ⊂ Ñ ′. Since Ñ ′ is semisimple there
exists L′ so that Ñ ′ = L⊕ L′. Then we have

Ñ ( Ñ ⊕ L Ñ ( Ñ ⊕ L′

so by maximality of Ñ ′ in S, we know x ∈ Ñ ⊕ L and x ∈ Ñ ⊆ N ⊕ L′. But then

x ∈ (Ñ ⊕ L) ∩ (Ñ ⊕ L′) = Ñ

which is a contradiction since Ñ ∈ S.

Theorem 3.30. Let A be an associative unital ring and M a left A-module. The following
are equivalent.

1. M is semisimple.

2. M is a direct sum of simple modules.

3. M is a sum of simple modules.

Proof. We’ll just do a partial proof, just (1) ⇐⇒ (3).
(1) =⇒ (3) Let N ⊂ M be the sum of all simple submodules, and suppose N 6= M .

So there is an N ′ so that M = N ⊕ N ′. Then N ′ is semisimple, so it contains a simple
submodule, but then this simple submodule is not contained in N , which contradicts the
definition of N .

(3) =⇒ (1) Suppose M =
∑
i∈I

Mi with Mi simple submodules. Let N ⊂M be a proper

submodule. Consider the family

S =

{
subsets K ⊂ I such that N ∩

∑
i∈K

Mi = 0

}
Since N 6= M , Mi ( N for at least some i, so S is nonempty. If we have an ascending chain
in S, we can take the union of that ascending chain and obtain a new element of S, so S
satisfies the hypotheses of Zorn’s lemma. So by Zorn’s lemma, S has a maximal element K̃.
Set

N ′ =
∑
i∈K′

Mi
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We claim that M = N ⊕ N ′. By definition of S, N ∩ N ′ = 0, so it suffices to show that
Mi ⊂ N + N ′ for all i ∈ I. Suppose Mi 6⊂ N + N ′ for some i. Then Mi ∩ (N + N ′) is a
proper submodule of Mi, so it is zero. Then

N ∩
∑

j∈K′∪{i}

Mj = 0

but this contradicts the maximality of K ′.

Example 3.31. Let A = Z. We describe all the simple modules and some of the semisimple
modules for A.

We claim that the simple Z-modules are of the form Z/pZ for p a prime. Suppose M
is a simple Z-module, and let m ∈ M . Then we have a Z-module homomorphism (abelian
group homomorphism)

φm : Z→M 1 7→ m

Since M is simple, and imφm is a nonzero submodule, φm must be surjective. Thus by the
1st isomorphism theorem M ∼= Z/ kerφm ∼= Z/nZ for some n. If n is not prime, then Z/nZ
is not simple. If n = ab with a, b > 1, then aZ/nZ is a nonzero proper submodule of Z/nZ.
On the other hand, if n is prime, then Z/nZ is simple.

A semisimple Z-module is a direct sum of simple modules. Thus a Z-module is semisimple
if and only if it is a direct sum of copies of Z/pZ, for various primes p, possibly repeating.

Next we claim that a Z module of the form Z/nZ is semisimple if and only if n is square-
free. Suppose Z/nZ is a semisimple Z-module. Let n = pα1

1 · · · p
αi
i be the unique factorization

of n, with all pj distinct. By the Chinese Remainder Theorem,

Z/nZ ∼= Z/pα1
1 Z⊕ · · · ⊕ Z/pαi

i Z

As noted above, Z/pαj

j Z is simple if and only if αj = 1. Furthermore, Z/pαj

j Z is semisimple if

and only if j = 1, since if j > 1 then it contains pjZ/p
αj

j Z as a submodule with no orthogonal
complement. So Z/nZ is semisimple if and only if all the terms in the direct sum above are
simple, which is to say, α1, . . . , αi = 1, which is to say, if and only if n contains no repeated
prime factors. This is equivalent to n being square-free.

Definition 3.32. A ring A is (left) semisimple if it is semisimple as a left module over
itself.

Proposition 3.33. Let A be a semisimple ring. Then

1. Every A-module is semisimple.

2. Every short exact sequence of A-modules splits.

Proof. (1) Any free A-module is semisimple, since it is a direct sum of copies of A and A
is semisimple. Any module is a quotient of a free module, and a quotient of a semisimple
module is semisimple.

(2) Let 0 → L
α−→ M

β−→ N → 0 be a short exact sequence of A-modules. By (1), M
is semisimple, so there is a submodule L′ ⊂ M such that M = imα ⊕ L ∼= L ⊕ L′. Since
imα = ker β, β|L′ : L′ → N is an isomorphism. Then (β|L′)−1 : N → M is a splitting for
the sequence.
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Remark 3.34. If every short exact sequence of A-modules splits, then A is semisimple, so
some sources give this as the definition of a simple ring.

Example 3.35. Any field or division ring is a semisimple ring.

Example 3.36. The ring Z is not semisimple. As we showed in example, Z-module is
semisimple if and only if it is a direct sum of prime order cyclic groups. But not every
abelian group is such a direct sum, for example Z/4Z.

Theorem 3.37 (Artin-Wedderburn). Let A be a semisimple ring. Then

A ∼= Mn1(D1)⊕ · · · ⊕Mnr(Dr)

for some integers n1, . . . , nr and division rings D1, . . . , Dr. Furthermore, this decomposition
of A is unique up to permutatin the direct summands.

Proof. Involved. We aren’t really going to use this, so we just include it for interest.

Next we give some justification for the study of semisimple rings, showing that they arise
naturally in the study of representations of finite groups.

Definition 3.38. Let K be a field. A representation of a group G is a K-vector space V
along with a group homomorphism ρ : G→ GL(V ).

Alternately, we can describe a representation in terms of the group algebra K[G].

Definition 3.39. Let G be a finite group and K a field. The group algebra K[G] is

K[G] :=

{∑
σ∈G

aσσ : aσ ∈ K

}

As a K-vector space, it has a basis given by elements of G. The multiplication in K[G] is
determined by the multiplication in G along with K-linearity and the distributive property.

Remark 3.40. Given a representation ρ : G → GL(V ), for σ ∈ G and x ∈ V set σx :=
ρ(σ)x. By linearity, extend this G-action on V to a K[G]-action. That is, extend ρ to

ρ̃ : K[G]→ End(V )

(∑
σ∈G

aσσ

)
x =

∑
σ∈G

aσ(σx) =
∑
σ∈G

aσρ(σ)x

This gives V the structure of a K[G]-module. Conversely, given a K[G]-module V , we obtain
an associated representation by reversing this procedure. So V being a representation is
equivalent to being a K[G]-module.

Theorem 3.41 (Classical result in representation theory). Any representation of a finite
group on a C-vector space is completely reducible 4

4Complete reducible means a direct sum of irreducible representations. A representation is irreducible if
it has no proper subrepresentations. A subrepresentation of a representation V is a subspace W ⊂ V which
is closed under the G-action.
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In our terms, this theorem is just saying that C[G] is a semisimple ring. This generalizes as
follows.

Theorem 3.42 (Mashke). Let G be a a finite group and K a field such that charK does
not divide |G|. Then K[G] is a semisimple ring.

Before the proof, note that this immediately generalizes the classical result, since if charK =
0 (such as the case K = C), then it does not divide |G| for any finite G.

Proof. Let A = K[G]. We show that any A-module is semisimple. Let M be an A-module,
and N ⊂M a submodule. Considering M,N as K-vector spaces, there is a complementary
subspace N ′ ⊂M such that

M = N ⊕N ′

as K-vector spaces. Note that we have no information on whether N ′ is a submodule, so we
are not done. Let π : M → N be the projection onto the first component. Note this is a
map of K-vector spaces, but not necessarily of A-modules. Observe that

π|N = IdN π2 = π

To construct N ′′ ⊂M a submodule such that M = N ⊕N ′′, we “average” π over G. Define

π̃ : M → N π̃(m) =
1

|G|
∑
g∈G

g−1 (π (gm))

Since G is finite, the sum makes sense. Also note that 1
|G| is only allowed in the expression

because we assumed that charK does not divide |G|. We claim that π̃ satisfies

π̃|N = IdN (3.1)

π̃2 = π̃ (3.2)

π̃(hm) = hπ̃(m) ∀m ∈M,h ∈ G (3.3)

The first equation is obvious because π|N = IdN , and the second equation follows easily from
the fact that π2 = π. The last one requires a bit of a trick. Consider

π̃(hm) =
1

|G|
∑
g∈G

g−1π(ghm)

Make the substitution σ = gh. Then σ−1 = h−1g−1 and g−1 = hσ−1. As g runs over G, so
does σ, because right multiplication by h is an automorphism of G. So

π̃(hm) =
1

|G|
∑
g∈G

g−1π(ghm) =
1

|G|
∑
σ∈G

hσ−1π(σm)

But now we can pull out the h and switch back to g as our indexing variable, and it’s clear
that the expression on the right is hπ̃(m).

1

|G|
∑
σ∈G

hσ−1π(σm) = h
1

|G|
∑
σ∈G

σ−1π(σm) = h
1

|G|
∑
g∈G

g−1π(gm) = hπ̃(m)
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So π̃ is a map of A-modules. Then N ′′ := ker π̃ is an A-submodule of M . So consider the
sequence

0→ N ′′ ↪→M
π̃−→ N → 0

This splits by the inclusion N ↪→M , so M = N ′′⊕N as A-modules. Thus M is semisimple.

Remark 3.43. Both the finiteness hypothesis and characteristic hypothesis were important
steps in the proof above, so we can’t drop them. In fact, one can prove that if G is finite
and charK does divide |G| ,that K[G] is NOT semisimple. In another direction, there are
infinite groups whose group ring is not semisimple, such as G = Z. So Mashke’s theorem is
the best possible result in this direction.

3.3.2 Semisimple abelian categories

Lemma 3.44 (Splitting lemma). Let A be an abelian category and 0 → A → B → C → 0
be a short exact sequence in A. The following are equivalent.

1. B → C has a right inverse.

2. A→ B has a left inverse.

3. The short exact sequence is isomorphic (as a short exact sequence) to
0→ A→ A⊕ C → C → 0.5

Proof. Just use Freyd-Mitchell embedding and the splitting lemma for R-modules.

Definition 3.45. If the equivalent conditions above hold, we say the short exact sequence
is split.

Definition 3.46. An abelian category A is semisimple if every short exact sequence in A
is split.

Example 3.47. If R is a semisimple ring, the category of left R-modules is semisimple.

Definition 3.48. If X, Y are objects of A, we say X is a subobject of Y if there is a
monomorphism X → Y . 6

Definition 3.49. An object in an abelian category is simple if the only subobjects are the
zero object and the object itself. An object is semisimple if it is a coproduct of simple
objects.

5This is stronger than just B ∼= A⊕ C as objects. Isomorphism of short exact sequences means there is
an isomorphism B → A⊕C which fits into a suitable commutative diagram with the short exact sequences
as rows.

6This is really not the proper definition of subobject. The right definition is way more complicated than
it’s worth though.
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Remark 3.50. Some authors define a semisimple abelian category to be one in which every
object is semisimple. This is not equivalent to our definition in terms of short exact sequences.
If semisimple is used in this other sense, usually they would call a category in which every
sequence splits a “split abelian category.” It is possible to show that

A is semisimple =⇒ A is split

The converse is false, so our definition of semisimple category is weaker than the alternative
definition. We will not work with the other definition, though, and we will continue to use
“semisimple” to mean a category in which every short exact sequence splits.

Theorem 3.51. If A is a semisimple abelian category, then it has a triangulated structure.

Proof. Let T = [1] be the identity functor on A. We declare a triangle

X
f−→ Y

g−→ Z
h−→ X[1] = X

to be distinguished if it is exact at Y and Z and “exact at X” meaning ker f = imh.
Before verifying the triangulated axioms hold, we describe a form which every distin-

guished triangle in this category has. Given a distinguished triangle as above, we have a
short exact sequence

0→ kerh→ Z → imh→ 0

Since A is semisimple, Z ∼= kerh ⊕ imh. Also kerh ∼= im g ∼= coker f and imh ∼= ker f by
exactness, so Z ∼= coker f ⊕ f . That is, we have an isomorphism of triangles

X Y Z X

X Y coker f ⊕ ker f X

IdX

f

IdY

g h

IdX

f

All the morphisms in or out of coker f ⊕ ker f are induced by various universal properties of
kernels, cokernels, and coproducts. So any triangle satisfying our definition of distinguished
is isomorphic to a triangle of the form on the bottom row.

Now we can verify the triangulated axioms. (TR1a) and (TR1b) are obvious. For (TR1c),

given X
f−→ Y , it completes to the distinguished triangle X

f−→ Y → coker f ⊕ ker f → X.
(TR2) is also obvious from the definition, since the definition is clearly symmetric with
respect to X, Y, and Z. The first tricky verification is (TR3). Given a diagram as below
with distinguished rows, we have to complete it to a morphism of triangles.

X Y coker f ⊕ ker f X

X ′ Y ′ coker f ′ ⊕ ker f ′ X ′

g

f

h g

f ′

Because of the commutativity of the first square, we have natural maps h : coker f → coker f ′

and g̃ : ker f → ker f ′. Then the coproduct of these maps gives a map h⊕g̃ : coker f⊕ker f →
coker f ′ ⊕ ker f ′. The resulting diagram then commutes. This is all very obvious if A is a
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category of R-modules, in the general case just be a more careful, or apply the Freyd-Mitchell
embedding theorem.

Finally, we verify the octahedral axiom (TR4). Suppose we have a diagram below with
commutative squares on the left and distinguished rows.

X Y coker f ⊕ ker f X

X Z cokerh⊕ kerh X

Y Z coker g ⊕ ker g Y

1

f

g 1

f

h

1 f

g

We need vertical maps between the coker⊕ ker terms to make a commutative diagram. As
when verifying (TR3), we have naturally induced maps

g : coker f → cokerh i : ker f → kerh

f̃ : kerh→ ker g j : cokerh→ coker g

In the category of R-modules, g is the map induced on the quotients by g and f̃ is just the
restriction of f to kerh, and i, j are inclusion maps. Then define

u : coker f ⊕ ker f → cokerh⊕ kerh u = g ⊕ i
v : cokerh⊕ kerh→ coker g ⊕ ker g v = j ⊕ f̃

Then we claim that the following diagram commutes and that the bottom row is distin-
guished.

X Y coker f ⊕ ker f X

X Z cokerh⊕ kerh X

Y Z coker g ⊕ ker g Y

coker f ⊕ ker f cokerh⊕ kerh coker g ⊕ ker g coker f ⊕ ker f

1

f

g

a

u 1

f

h

1

b

v f

g

a b 1 a

u v 0

Commutativity is not hard to check, just carry things out in a suitable category of R-
modules using the Freyd-Mitchell embedding theorem. We work through verifying exactnes
of the resulting sequence at the cokerh⊕ kerh term, again working as if everything was an
R-module.

Since v = j ⊕ f̃ and j is a monomorphism, ker v = ker i ⊕ ker f̃ = 0 ⊕ ker f . Similarly,
since u = g ⊕ i, imu = im g ⊕ ker f . So it suffices to verify that im g ∩ cokerh = 0.
Since gf = h, im g ⊂ imh, so g maps to zero into cokerh. Thus im g ⊕ cokerh = 0 so
imu = 0⊕ kerf = ker v. So the constructed sequence is exact at that term. We leave it to
you to check exactness at the other terms, since they are easier.
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3.4 Abelian triangulated category is semisimple

Our next object is to show that any abelian triangulated category is semisimple. This result
is not interesting because abelian triangulated categories come up often - in fact, the very
opposite. The result says that abelian categories and triangulated categories are structures
which are not particularly compatible.

While it is possible for a category to be both, having both forces a very rigid structure,
that of being semisimple. Being semisimple is such a stringent “condition that this essentially
says that in any “typical” situation, a category cannot be both abelian and triangulated.
Before the main result, we need some more general facts about triangulated categories.

Proposition 3.52 (Direct sum of distinguished triangles is distinguished). Let C be a tri-
angulated category and suppose

X
u−→ Y

v−→ Z
w−→ X[1] X ′

u′−→ Y ′
v′−→ Z ′

w′−→ X ′[1]

are distinguished triangles. The triangle

X ⊕X ′ u⊕u
′

−−−→ Y ⊕ Y ′ v⊕v
′

−−→ Z ⊕ Z ′ w⊕w
′

−−−→ X[1]⊕X ′[1]

is distinguished. Note that since the translation functor [1] is additive, there is a natural
isomorphism (X ⊕X ′)[1] ∼= X[1]⊕X ′[1].

Proof. By (TR1c), we can complete X ⊕X ′ u⊕u
′

−−−→ Y ⊕ Y ′ to a distinguished triangle.

X ⊕X ′ u⊕u
′

−−−→ Y ⊕ Y ′ → U → X[1]⊕X ′[1]

Let πX : X ⊕X ′ → X and πY : Y ⊕ Y ′ → Y be the canonical “projection” maps associated
with the coproduct. Then we have a commutative diagram

X ⊕X ′ Y ⊕ Y ′ U X[1]⊕X ′[1]

X Y Z X[1]

πX

u⊕u′

πY πX [1]

u v w

Since the rows are distinguished, by (TR3) there is a map f : U → Z completing this to a
morphism of triangles.

X ⊕X ′ Y ⊕ Y ′ U X[1]⊕X ′[1]

X Y Z X[1]

πX

u⊕u′

πY f πX [1]

u v w

Similarly, considering the projections πX′ : X ⊕X ′ → X ′ and πY ′ : Y ⊕ Y ′ → Y ′ and again
using (TR3), there is a map f ′ : U → Z ′ fitting into the diagram below.

X ⊕X ′ Y ⊕ Y ′ U X[1]⊕X ′[1]

X ′ Y ′ Z ′ X ′[1]

πX′

u⊕u′

πY ′ f ′ πX′ [1]

u′ v′ w′
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Set φ = f ⊕ f ′ : U → Z ⊕ Z ′. Note that IdX⊕X′ = πX ⊕ πX′ , so φ fits into the commutative
diagram

X ⊕X ′ Y ⊕ Y ′ U X[1]⊕X ′[1]

X ⊕X ′ Y ⊕ Y ′ Z ⊕ Z ′ X[1]⊕X ′[1]

1

u⊕u′

1 φ 1

u⊕u′ v⊕v′ w⊕w′

It is tempting to apply lemma 3.18 here, but that only applies if we know both rows are
distinguished. However, a slight tweak of the argument for lemma 3.18 shows that φ is
an isomorphism, using the fact that the Hom functor commutes with finite direct sums.
We omit the details. Since φ is an isomorphism, this diagram above is an isomorphism of
triangles, so by (TR1b) the bottom rows is also distinguished.

Corollary 3.53. Let C be a triangulated category with objects X, Y . Let i : X → X ⊕ Y
and p : X ⊕ Y → Y be the canonical maps associated with the biproduct. Then

X
i−→ X ⊕ Y p−→ Y

0−→ X[1]

is a distinguished triangle.

Proof. By (TR1a), X
1−→ X → 0→ X[1] and Y

1−→ Y → 0→ Y [1] are distinguished. Apply

the rotation axiom (TR2) to the second to get that 0→ Y
1−→ Y → 0 is distinguished. Then

apply proposition 3.52 to get the desired distinguished triangle.

Corollary 3.54. Suppose X
u−→ Y

v−→ Z
0−→ X[1] is distinguished. Then it is isomorphic as

a triangle to a triangle of the form X
i−→ X ⊕ Y p−→ Y

0−→ X[1].

Proof. Rotate both triangles using (TR2) and then consider the diagram

X[1] X Z Y

X[1] X X ⊕ Y Y

1

0

1

u v

1

0 i p

Then by (TR3) this completes to a morphism of triangles. By the 5-lemma 3.18, the new
arrow is an isomorphism, so this is an isomorphism of triangles. Then rotate back to get the
isomorphism between the original triangles.

Remark 3.55. As a consequence of the previous results, we can describe all monomorphisms
and epimorphisms in a triangulated category. Morally speaking, all monomorphisms are all
essentially inclusions X → X ⊕ Y and all epimorphisms are projections X ⊕ Y → Y , up to
an automorphism. The next result makes this statement precise.

Proposition 3.56. Let C be a triangulated category.

1. If X
f−→ Y is a monomorphism in C, then there exists an isomorphism Z

φ−→ X ⊕ Y
such that f = φi, where X

i−→ X ⊕ Y is the canonical map. In particular, pφ−1 is a
left inverse for f , where X ⊕ Z p−→ X is the canonical map.
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2. If X
f−→ Y is an epimorphism in C, then there exists an isomorphism X

ψ−→ Y ⊕Z such
that f = pψ, where Y ⊕ Z p−→ Y is the canonical map. In particular, ψ−1i is a right

inverse for f , where Y
i−→ Y ⊕ Z is the canonical map.

Proof. (1) By (TR1c) we can extend f to a distinguished triangle X
f−→ Y

g−→ Z
h−→ X[1].

Then apply (TR2) to rotate it to a distinguished triangle Z[−1]
−h[−1]−−−−→ X

f−→ Y
g−→ Z. We

know f ◦ h[−1] = 0, so since f is a monomorphism h[−1] = 0, which implies h = 0. Then

by the previous corollary there is an isomorphism Z
φ−→ X ⊕ Y making an isomorphism of

triangles. In particular, the resulting commutative diagram implies f = φi.
(2) Reverse some arrows in the argument for (1).

Remark 3.57. As a slogan, we memorialize the previous result by saying

All monomorphisms and epimorphisms in a triangulated category are split.

Theorem 3.58. An abelian triangulated category is semisimple.

Proof. Let C be an abelian triangulated category, and let 0→ X
f−→ Y

g−→ Z → 0 be a short
exact sequence in C. Then f is a monomorphism, so by the previous result f splits. That
is, f has a left inverse, which means the sequence splits. That is, Y ∼= X ⊕Z fitting into an
isomorphism of exact sequences. Thus C is semisimple.

3.5 Homotopy category is triangulated

Our next goal is to show that the homotopy category K(A) of an additive category A is
triangulated. Recall that if f • : X• → Y • is a morphism of complexes, then the cone of f is
the complex C•f where

Cn
f = Xn[1]⊕ Y n = Xn+1 ⊕ Y n dnCf

=

(
−dn+1

X 0
fn+1 dnY

)
and that there are always morphisms of complexes i•f : Y • → C•f and p•f : C•f → X•[1], which
are just canonical maps associated with the biproduct on each term.

Definition 3.59. A standard triangle in C(A) is a triangle of the form

X•
f•−→ Y •

i•f−→ C•f
p•f−→ X•[1]

The rough idea of defining distinguished triangles in K(A) is to set these standard triangles
to be distinguished. Note that immediately we can see that this will not work to put a
triangulated structure on the chain complex category C(A), because it fails (TR1a). The
cone of the identity morphism X• → X• is not zero, so the triangle

X•
IdX•−−−→ X• → 0→ X•[1]

is not a standard triangle, nor is it isomorphic to a standard triangle using morphisms
of C(A). However, as we’ll see soon, the greater flexibility afforded by morphisms up to
homotopy allows such a triangle to be isomorphic to a standard triangle.
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Definition 3.60. A triangle in K(A) is distinguished if it is isomorphic (in K(A)) to a
standard triangle.7

Lemma 3.61 (TR1a). Let X• be a complex in C(A). Then the cone CIdX• is isomorphic
to the zero object in K(A).

Proof. First, note that to prove an object is isomorphic to the zero object in an additive
category, it suffices to show that the identity morphism of that object is zero. So we will
just show that the identity morphism of C = CIdX• is nullhomotopic. First recall that the
boundary maps for C are given by

dnC : Xn+1 ⊕Xn → Xn+2 ⊕Xn+1

(
−dn+1

X 0
IdXn+1 dnX

)
Define

hn : Xn+1 ⊕Xn → Xn ⊕Xn−1
(

0 IdXn

0 0

)
In other words, h(x, y) = (y, 0). To verify that IdC is nullhomotopic, we need to show that
dn−1C hn + hn+1dnC = IdCn . This is a cozy matrix calculation.

dn−1C hn + hn+1dCn =

(
−dnX 0
IdXn dn−1X

)(
0 IdnX
0 0

)
+

(
0 IdXn+1

0 0

)(
−dn+1

X 0
IdXn+1 dnX

)
=

(
0 −dnX
0 IdXn

)
+

(
IdXn+1 dnX

0 0

)
=

(
IdXn+1 0

0 IdXn

)
= IdCn

Lemma 3.62 (TR3). Suppose we have a diagram in C(A) as below.

X• Y •

X•1 Y •1

f•

u• v•

g•

Then there exists a morphism w• : Cf → Cg, fitting into the following diagram.

X• Y • Cf X•[1]

X•1 Y •1 Cg X•1 [1]

f•

u• v•

i•f

w•

p•f

u•[1]

g• i•g p•g

If the first diagram commutes, then the second also commutes. If the first diagram commutes
up to homotopy, then the second also commutes up to homotopy.

7Technically, instead of “standard triangle” we should say the image of a standard triangle in K(A), but
whatever.
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Proof. Suppose the first diagram commutes up to homotopy, so there are maps

hn : Xn → Y n+1
1

such that
gnun − vnfn = dn−1Y1

hn + hn+1dnX

If the first diagram commutes, then the equation is true with h = 0. Then define

w• : CfCg wn : Xn+1 ⊕ Y n → Xn+1
1 ⊕ Y n

1 wn =

(
un+1 0
−hn+1 vn

)
When h = 0 it is a straightforward calculation to see that the squares in the second diagram
commute. When h 6= 0, showing the remaining squares commute up to homotopy is also not
very interesting, so we omit the calculation.

Lemma 3.63. Suppose (TR1), (TR2), and (TR3) hold in K(A). Let f • : X• → Y • be a
morphism in K(A) and let a• : X• → Y • be a morphism in C(A) which represents f •. The
following are equivalent.

1. The triangle X•
f•−→ Y • → Z• → X•[1] is distinguished.

2. There exists an isomorphism u• : Z• → Ca in K(A) making the following diagram
commute (in K(A)).

X• Y • Z• X•[1]

X• Y • Ca X•[1]

f•

1 1 u• 1

a• i•a p•a

Proof. (2) =⇒ (1) is immediate from the definition of distinguished triangles in K(A), so
we just need to prove (1) =⇒ (2). By definition, the triangle involving the cone Ca is
distinguished. By (TR3), the diagram below can be completed to a morphism of triangles.

X• Y • Z• X•[1]

X• Y • Ca X•[1]

f•

1 1 1

a• i•a p•a

So a morphism u• exists. By remark 3.19, the triangulated 5-lemma holds in K(A), so u•

must be an isomorphism.

Theorem 3.64. Let A be an additive category. The homotopy category K(A) with the
translation and distinguished triangles above is a triangulated category.

Proof. (TR1b) and (TR1c) are obvious from the definition. To verify (TR1a), we claim that
the following is an isomorphism of triangles
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X• X• 0 X•[1]

X• X• CId X•[1]

Id

Id Id Id

Id i•Id p•Id

By lemma 3.61, the map 0 → CId is an isomorphism. The only thing to verify here is that
the middle square commutes in the homotopy category. That is, we need to verify that
i•Id : X• → CId is nullhomotopic. The nullhomotopy is given by maps

hn : Xn → Cn−1 = Xn ⊕Xn−1 x 7→ (x, 0)

and we omit the calculation to show that this gives a nullhomotopy of i•Id. This finishes the
verification of (TR1a). (TR3) is immediate lemma 3.62.

Next we verify (TR2). Suppose we have a standard triangle.

X•
f•−→ Y •

i•f−→ Cf
p•f−→ X•[1]

To prove (TR2), we need to prove that the rotated version is distinguished (we also need
to show that it’s possible to rotate the other way, but we’ll discuss that later). The rotated
triangle is

Y •
i•f−→ Cf

p•f−→ X•[1]
−f•[1]−−−→ Y •[1]

We will show this is isomorphic to the standard triangle associated with i•f . That is, we have
the standard triangle below where Cif is the cone of if .

Y •
i•f−→ Cf

i•if−→ Cif
p•if−−→ Y •[1]

For concreteness, Cif is the complex with objects

Cn
if

= Y •[1]n ⊕ Cn
f = Y n+1 ⊕Xn+1 ⊕ Y n

and differentials

dnCif
=

(
−dn+1

Y 0
in+1
f dnCf

)
=

−dn+1
Y 0 0
0 −dn+1

X 0
Idn+1
Y fn+1 dnY


and we have the maps

inif : Cn
f → Cn

if
(xn+1, yn) 7→ (0, xn+1, yn)

pnif : Cn
if
→ Y n+1 (yn+1, xn+1, yn) 7→ yn+1

As we said before, we claim that the rotated triangle is isomorphic to the standard triangle
involving the cone Cif . To this end, define

αn : Xn+1 → Cn
if

x 7→ (−f(x), x, 0)

−fn+1

IdXn+1

0


βn : Cn

if
→ Xn+1 (yn+1, xn+1, yn) 7→ xn+1

(
0 IdXn+1 0

)
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One can check that α•, β• are morphisms of complexes X•[1] → C•if and C•if → X•[1]

respectively. We claim they are inverses up to homotopy, hence inverses in K(A) between
X•[1] and C•if in K(A). In one direction, the composition is equal to the identity even in

C(A).

βnαn =
(
0 IdXn+1 0

)−fn+1

IdXn+1

0

 = IdXn+1

However, the reverse composition is not equal to the identity as a chain map, but only up
to homotopy, as we now show. Define

hn : Cn
if
→ Cn

if
(yn+1, xn+1, yn) 7→ (yn, 0, 0)

0 0 IdY n

0 0 0
0 0 0


Then one can do some matrix multiplications to verify that

IdCn
if
−αnβn = dnCif

hn + hn+1dnCif

hence h is a homotopy, so αnβn is homotopic to the identity. So α•β• and β•α• are both
the respective identities in K(A), so α• is an isomorphism X•[1]→ C•if . All that remains to
verify is that it fits into a diagram making an isomorphism of triangles as below.

Y • Cf X•[1] Y •[1]

Y • Cf Cif Y •[1]

1

i•f

1

p•f

α•

−f•[1]

1

i•f
i•if

p•if

The left square obviously commutes, and the right square is also commutes even in the
complex category. The middle square however only commutes up to homotopy, as we now
verify. Consider the composition

βninif =
(
0 IdXn+1 0

)0 0 0
0 IdXn+1 0
0 0 IdY n

 =
(
0 IdXn+1 0

)
= pnf

Thus α•β•i•if = α•p•f . But α•β• is homotopic to IdX•[1], so in the homotopy category
α•p•f = i•if , which is precisely the commutativity of the middle square we need.

This completes the proof that if we rotate a standard distinguished triangle in one di-
rection, it remains distinguished, but this is not the entirety of (TR2). (TR2) also requires
that if the rotated triangle is distinguished, then the original triangle was distinguished, or
equivalently, if we start with a standard distinguished triangle, then rotating it the other
direction also gives a distinguished triangle.

We omit the argument for this rotation direction, since it is analogous to the previous
argument. The argument follows the same basic steps: write down both the rotated triangle
and the associated standard triangle associated to the first map in it, which is −p•f [−1].
Then show these triangles are isomorphic, by constructing chain maps in both directions
such that the compositions are homotopic to the identity.
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Finally, we verify the octahedral axiom (TR4). We start with the following diagram with
distinguished rows and commutative squares on the left.

X• Y • Z•1 X•[1]

X• Z• Y •1 X•[1]

Y • Z• X•1 Y •[1]

f•

1 g• 1

h•

f• 1 f•[1]

g•

By lemma 3.63, the distinguished rows are isomorphic to triangles of cones for representative
chain maps. In particular, we apply the lemma to the top and bottom rows to obtain
isomorphisms of triangles

X• Y • Z•1 X•[1] Y • Z• Y •1 Y •[1]

X• Y • Ca X•[1] Y • Z• Cb Y •[1]

f•

1 1 ∼= 1

g•

1 1 ∼= 1

a• i•a p•a b• i•b p•b

Define c• : X• → Z• by c• = b•a•. Since a• represents f • and b• represents g•, c• represents
h•. So again using lemma 3.63, the middle triangle is isomorphic to the cone triangle for
c•. So we have the following diagram in C(A), where the left squares commute (not up to
homotopy, literally commute).

X• Y • Ca X•[1]

X• Z• Cc X•[1]

Y • Z• Cb Y •[1]

a•

1 b• 1

c•

a• 1 f•[1]

b•

Since the left squares commute, we can define u• : Ca → Cc and v• : Cc → Cb making the
whole diagram commute.

un : Cn
a → Cn

c un =

(
IdXn+1 0

0 bn

)
vn : Cn

c → Cn
b vn =

(
an+1 0

0 IdZn

)
So we now have the following commutative diagram in C(A).
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X• Y • Ca X•[1]

X• Z• Cc X•[1]

Y • Z• Cb Y •[1]

a•

1 b• u• 1

c•

a• 1 v• f•[1]

b•

We just need to verify that Ca
u•−→ Cc

v•−→ Ca[1] is a distinguished triangle, where the map
Cb → Ca[1] is i•a[1] ◦ p•b . We will show that it is isomorphic to the cone triangle for u•. So
consider the diagram

Ca Cc Cb Ca[1]

Ca Cc Cu Ca[1]

u•

1

v•

1

i•a[1]◦p•b

1

u• i•u p•u

Define w• : Cb → Cu by

wn : Cn
b → Cn

u wn : Y n+1 ⊕ Zn → Xn+2 ⊕ Y n+1 ⊕Xn+1 ⊕ Zn

wn =


0 0

IdY n+1 0
0 0
0 IdZn

 wn(yn+1, zn) = (0, yn+1, 0, zn)

We omit the details, but it is similar to other arguments we have done to show that w• fits
into the preceding diagram to make a morphism of triangles, and is an isomorphism in K(A).
Hence the triangle Ca → Cc → Cb is distinguished, completing the proof of (TR4).

We now have the tools to give an example where the homotopy category fails to be abelian.

Corollary 3.65. Let A = AbGp be the category of abelian groups. The category K(A) is
not abelian.

Proof. Let p ∈ Z be a prime, and consider the nonsplit short exact sequence of abelian
groups

0→ Z/pZ 17→p−−→ Z/p2Z π−→ Z/pZ→ 0 (3.4)

where π is the quotient map 1 7→ 1 mod p. Recall the additive functors C : A → C(A)
which takes an object to the complex with that object concentrated in degree zero, and
H : C(A) → K(A) which does nothing to objects and takes a morphism to its homotopy
class. Let K = H ◦ C : A → K(A) be the composition, and apply K to π.

K(Z/p2Z)
Kπ−−→ K(Z/pZ)

It is not hard to show that Kπ is an epimorphism, and that Kπ 6= 0, which is to say, Cπ
is not nullhomotopic. Now suppose to the contrary that K(A) is abelian. Then we have a
short exact sequence in K(A)

0→ ker(Kπ)→ K(Z/p2Z)
Kπ−−→ K(Z/pZ)→ 0
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By theorem 3.64 K(A) is triangulated, so by theorem 3.58, K(A) is semisimple. Hence this
sequence splits, which is to say, there is a morphism s : K(Z/pZ)→ K(Z/p2Z) in K(A) such
that Kπ◦s = IdK(Z/pZ). That is, there is a morphism of complexes s̃ : C(Z/pZ)→ C(Z/p2Z)
where Hs̃ = s and such that Cπ ◦ s̃ is homotopic to the identity on C(Z/pZ).

However, as C(Z/pZ) and C(Z/p2Z) are both concentrated in degree zero, there are no
nontrivial homotopies. Thus Cπ ◦ s̃ = IdC(Z/pZ). In degree zero, we have (Cπ)0 = π and so
π ◦ (s̃)0 = IdZ/pZ. That is, (s̃)0 gives a splitting of sequence 3.4, which is a contradiction
since that sequence is not split.

Remark 3.66. The argument above is easily adapted to the more general situation where
A is any abelian category which is not semisimple. That is, the homotopy category over any
non-semisimple abelian category is not abelian.

Above we showed that K(A) is triangulated, which depended only upon A being an additive
category. Now suppose that A is also abelian, so that we have the cohomology functors

Hn : C(A)→ A X• 7→ HnX•

Since homotopy equivalent chain maps induce the same maps on Hn, this induces a functor
on K(A).

Hn : K(A)→ A X• 7→ HnX•

Theorem 3.67. Let A be an abelian category. The functor Hn : K(A) → A is a cohomo-
logical functor.

Proof. It’s enough to show that H0 is cohomological, and then use translation. We need to

show that for any distinguished triangle X•
f•−→ Y •

g•−→ Z•
h•−→ X•[1] in K(A), the sequence

H0X•
H0f•−−−→ H0Y •

H0g•−−−→ H0Z•

is an exact sequence in A. By lemma 3.63, our triangle is isomorphic to a cone triangle for
a• where a• is a representative of d•.

X• Y • Z• X•[1]

X• Y • Ca X•[1]

f•

1 1 u•∼= 1

a• i•a p•a

Now apply the functor H0 to this to get a commutative diagram in A.8

H0X• H0Y • H0Z• H0X•[1]

H0X• H0Y • H0Ca H0X•[1]

H0f•

1 1 H0u•∼= 1

H0a• H0i•a H0p•a

8In case you’re worried about whether H0X•[1] is H0(X•[1]) or (H0X•)[1], remember that H0 commutes
with translation, meaning that these two are naturally isomorphic.
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We wanted exactness of the top, but because the vertical arrows are all isomorphisms, this
is equivalent to exactness of the bottom row. Recall we have a short exact sequence in C(A)

0→ Y •
i•a−→ Ca

p•a−→ X•[1]→ 0

which then induces a long exact sequence in cohomology, which includes the segment

H−1X•[1]
∂−→ H0Y •

H0i•a−−−→ H0Ca

But we know that H−1X•[1] ∼= H0X•, and furthermore by tracing through the construction
of ∂ in the snake lemma, one can show that the connecting homomorphism ∂ here is the
same as H0a•. So the sequence

H0 H0a•−−−→ H0Y •
H0i•a−−−→ H0Ca

is exact (in A), so the sequence H0X•
H0f•−−−→ H0Y • → H0Z• is also exact. Thus H0 is

cohomological.
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4 Localization

Our next goal is to construct the derived category from the homotopy category using a
process of localizing a category. This is akin to localizing a ring, so we motivate this by first
studying some localization of rings, even noncommutative rings.

4.1 Localization of rings

4.1.1 Commutative rings

First we discuss the commutative case. LetR be a commutative (unital, associative) ring. Let
S ⊂ R \ {0} be a multiplicative subset, meaning 1 ∈ S and S is closed under multiplication.
Then there exists a commutative (unital, associative) ring RS and a ring homomorphism

εS : R→ RS

such that

1. ε(s) ∈ R×S for all s ∈ S, and

2. εS is universal with this property.

Property 2 above means that for any ring homomorphism θ : R→ R′ such that θ(s) ∈ (R′)×

for all s ∈ S, there exists a unique ring homomorphism ω : RS → R′ such that the following
diagram commutes.

R

RS R′

θεR

∃!
ω

In the usual way, this universal property makes RS unique up to isomorphism. The ring RS

is called the localization of R at S. This ring has two other key properties which are very
useful when working with localizations.

(A) Every element of RS is of the form εS(r)εS(s)−1 for some r ∈ R, s ∈ S. More colloqui-
ally, elements of RS look like “fractions” r

s
with r ∈ R, s ∈ S.

(B) The kernel of εS is the elements annihilated by some element of S.

ker εS = {r ∈ R : sr = 0 for some s ∈ S}

Example 4.1. Let R = Z and let S = Z \ {0}. The localization RS is Q. More generally,
if R is any integral domain and S is the set of all nonzero elements, then RS is the ring of
fractions of R, which is a field. The localization map εS : R → RS is the “inclusion” which
just sends an element x to the fraction x

1
. The kernel is trivial as R is an integral domain.

55



4.1.2 Possibly noncommutative rings

We want to know what happens when R is not necessarily commutative. Can we still form
a localization RS? Will it still have the properties above? If not, what conditions can we
impose on S in order to get properties like this?

We will show that RS still exists, the universal property still holds, but properties (A),
(B) above may fail. Basically, this means that RS is very unmanageable in this fully general
situation, since we can’t even think of the elements as fractions. The remedy for this will be
to impose conditions in S, to get some more control on RS.

Proposition 4.2. Let R be an associative unital (not necessarily commutative) ring and let
S ⊂ R \ {0} be a multiplicative subset. Then there exists an associative unital ring RS and
a morphism of rings εS : R→ RS such that

1. εS(s) ∈ R×S for all s ∈ S

2. εS is universal with this property.

Proof. To each r ∈ R, we associate a symbol xr, and to each s ∈ S, we associate a symbol
ys. So each s ∈ S has two associated symbols, xs and ys which are distinct. Set

X = {xr : r ∈ R}
Y = {ys : s ∈ S}
T = X ∪ Y

Let Z 〈T 〉 be the free Z-algebra on T . Informally, this is a polynomial ring over Z in non-
commuting variables xr and ys. Let I ⊂ Z 〈T 〉 be the 2-sided ideal generated by all relations
in R, together with

xsys − 1 ysxs − 1

for all s ∈ S. By “all relations in R” we mean that if a + b = c in R, then a + b− c = 0 so
we take a+ b− c as a generator of I, for example. Then define

RS := Z 〈T 〉 /I

and define
εS : R→ RS r 7→ xr = xr + I

This is a ring homomorphism because I contains all additive and multiplicative relations in
R by construction. It is also immediate from the construction that εS(s) = xs is a unit, since
ys is the 2-sided inverse.

xsys = xsys = 1

since xsys − 1 ∈ I. All that remains is to verify the universal property. Suppose θ : R→ R′

is a ring homomorphism such that θ(s) ∈ (R′)× for all s ∈ S. Then there exists ts ∈ R′ such
that

θ(s)ts = tsθ(s) = 1

In other words, ts = θ(s)−1. Define

ω̃ : Z 〈T 〉 → R′ xr 7→ θ(r) ys 7→ ts
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Since the above defines ω̃ only on the generating set, it extends uniquely to a ring homo-
morphism. The map ω̃ vanishes on the generators xsys− 1 and ysxs− 1 of I by definition of
ts.

ω̃(xsys − 1) = θ(s)ts − 1 = 1− 1 = 0

It vanishes on other generators of I because θ is a ring homomorphism. For example, if
a+ b = c in R, then

ω̃(xa + xb − xc) = θ(a) + θ(b)− θ(c) = θ(a+ b− c) = θ(0) = 0

So ω̃ induces a ring homomorphism

ω : RS → R xr 7→ θ(r) ys 7→ ts

which makes the required diagram commute for the universal property. Then we should
verify that ω is unique. Suppose ω′ : RS → R′ also makes the diagram commute.

R

RS R′

θεR

ω,ω′

By the diagram, ω′(xr) = θ(r) for all r ∈ R, and

θ(s)ω′(ys) = ω′(xs)ω
′(ys) = ω′(xsys)ω

′(1) = 1

Similarly, ω′(ys)θ(s) = 1. Thus ω′(ys) is the 2-sided inverse of θ(s). But multiplicative
2-sided inverses in arbitrary associative rings are still unique, and ts is also a 2-sided inverse
for θ(s), so ω′(ys) = ts. Thus ω′ agrees with ω on the generators xr, ys for all r ∈ R, s ∈ S,
so ω′ = ω.

4.1.3 Pathologies in localizing noncommutative rings

The localization constructed in the level of generality above can behave somewhat strangely.
We give an example below.

Example 4.3 (Failure of property (B)). Recall that in the commutative case, we can char-
acterize the kernel of the canonical map εS as annihilators of elements of S, which we called
property (B).

(B) ker εS = {r ∈ R : sr = 0 for some s ∈ S}
We show this fails in the noncommutative case. Fix a field K and an integer n ≥ 2, and let
R = Mn(K). For a multiplicative subset, let S = {1, E11}. This is multiplicative because
E2

11 = E11. By the proposition, we have a localization RS and map εS : R → RS which
makes εS(E11) into a unit. However, in R, E11 is a zero divisor. In particular,

E11E22 = 0 =⇒ εS (E11E22) = εS(E11)εS(E22) = 0

Since εS(E11) is a unit, this implies εS(E22) = 0. In particular, the kernel of εS is nontrivial.
Since R = Mn(K) is a simple ring, it has nontrivial 2-sided ideals, and ker εS is such an
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ideal, so ker εS = R, and εS is actually the zero map. This forces the localization RS to be
the zero ring.

But more importantly, kerS is not just elements of R which annihilate elements of S, it
is larger than this. For example, E11 ∈ R does not annihilate any element of S, but is killed
by εS.

Remark 4.4. The only important properties in the previous example were that R was
non-commutative, and the set S contained a zero divisor (in the example, E11 was our zero
divisor), and that the annihilator of that zero divisor is not the entire ring R. So many other
similar examples exist.

The previous example shows that property (B) fails, but in that example property (A) is
vacuously satisfied, since the localization RS was just the zero ring. Counterexamples for
property (A) are more complicated, but we sketch one. First we need to discuss division
hulls.

Definition 4.5. Let R be a ring and D a division ring. An ring homomorphism i : R ↪→ D
is a division hull if it is injective, and no proper division subring of D contains i(R).

Lemma 4.6. Let R be an associative unital ring with no zero divisors, and let S = R \ {0}
be the multiplicative subset of all nonzero elements. Assume that every element of RS can
be written in the form εS(r)εS(s)−1 for some r ∈ R, s ∈ S.

1. Then εS : R→ RS is a division hull.

2. If i : R ↪→ D is a division hull of R, then D ∼= RS, so R has a unique division hull (up
to isomorphism).

Proof. (1) Omitted.
(2) Since i maps elements of S to units in D, by the universal property, there exists a

unique morphism θ : RS → D making the following diagram commute.

R RS

D

i

εS

θ

Since θ(RS) is a division ring containing i(R), and D is a division hull, we must have
θ(RS) = D. Since θ is a morphism of division rings and is surjective, it must also be
injective, so θ is an isomorphism between D and RS.

Example 4.7 (Failure of property (A)). We give an example of a noncommutative ring R
and multiplicative subset S so that the localization RS fails property (A), that is, not every
element can be written in the form εS(r)εS(s)−1. Let K be a field and let

R = K 〈u, v〉
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be the polynomial ring in noncommuting variables over K, and let S = R\{0} be all nonzero
elements. Note that R has no zero divisors9. One can show that for n ∈ Z≥1, there exist
division hulls

εn : R→ Dn

and the division rings Dn have the property that if n 6= m, then there are no ring homo-
morphisms Dn → Dm. In particular, this shows that R has multiple division hulls which are
NOT isomorphic. By lemma 4.6, if RS has property (A), then it would have a unique (up to
isomorphism) division hull. Since it does not, it must not have property (A). For details on
the construction of these strange division hulls, see Lectures on Modules and Rings by Lam,
Theorem 9.27, on page 296.

4.1.4 Denominator sets and Ore conditions

Next up we seek conditions to impose on S which give us some control over the localization
RS, since the previous examples illustrate how RS can be quite strange in the full generality
of associative unital rings.

Definition 4.8. Let R be an associative unital ring, and S ⊂ R\{0} a multiplicative subset.
A right ring of fractions of R with respect to S is a ring R′ with a ring homomorphism
φ : R→ R′ such that

(a) φ(s) ∈ (R′)× for all s ∈ S.

(b) Every element of R′ has the form φ(r)φ(s)−1 for some r ∈ R, s ∈ S.

(c) The kernel of φ is precisely annihilators of elements of S.

kerφ = {r ∈ R : rs = 0 for some s ∈ S}

As our examples have demonstrated, a noncommutative localization RS need not be a right
ring of fractions. As a side note, one can define a left ring of fractions by reversing the
multiplications in (2) and (3), but we won’t make use of this dual notion.

Lemma 4.9 (Necessary conditions for a right ring of fractions). Suppose S,R are as above,
and φ : R→ R′ is a right ring of fractions with respect to S. Then

(I) aS ∩ sR 6= ∅ for all a ∈ R, s ∈ S

(II) If a ∈ R, s ∈ S, and sa = 0, then there exists t ∈ S such that at = 0.

Proof. (I) Let a ∈ R, s ∈ S. By property (b) of a right ring of fractions, φ(s)−1φ(a) can be
written as φ(r)φ(t)−1 for some r ∈ R, t ∈ S.

φ(s)−1φ(a) = φ(r)φ(t)−1

9Perhaps it is necessary to assume that K has characteristic zero to know that R has no zero divisors, I
am not sure.
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We can multiply both sides by φ(t) on the right and φ(s) on the left to get

φ(a)φ(t) = φ(s)φ(r) =⇒ φ(at) = φ(sr) =⇒ φ(at− sr) = 0

So at− sr ∈ kerφ. Then by property (c), there exists u ∈ S such that

(at− sr)u = 0 =⇒ atu = sru

Clearly atu ∈ aR and srU ∈ sR, so the element above lies in the intersection aS ∩ sR.
(II) Suppose a ∈ R, s ∈ S, sa = 0. Then φ(s)φ(a) = 0 implies φ(a) = 0 since φ(s) is a

unit. By property (c), there exists t ∈ S such that at = 0.

Definition 4.10. Condition (I) in the previous lemma is called the right Ore condition,
and a subset S ⊂ R \ {0} satisfying it is called a right Ore subset of R.

Definition 4.11. Let R be an associative unital ring and S ⊂ R \ {0} a multiplicative
subset. S is a right denominator set for R if it satisfies properties (I) and (II) from the
previous proposition.

Theorem 4.12. Let R be an associative unital ring and S ⊂ R\{0} a multiplicative subset.
Then R has a right ring of fractions with respect to S if and only if S is a right denominator
set.

Proof. Lemma 4.9 shows that if R has a right ring of fractions with respect to S, then S is a
right denominator set. We sketch the converse argument. Suppose S is a right denominator
set. Define a relation ∼ on R× S by

(a, s) ∼ (a′, s”) ⇐⇒ ∃b, b ∈ R such that sb = s′b′ and ab = a′b′

Informally, we think of (a, s) as a “fraction” a
s
. Most of the proof is a lengthy verication that

∼ is an equivalence relation on R×S. In particular, transitivity is where conditions (I) and
(II) are used. After showing this, define

R′ := (R× S)/ ∼

The equivalence class of (a, s) is denoted a
s
. Then define

φ : R→ R′ a 7→ a

1

Then define addition in R′ as follows. Suppose we have a1
s1
, a2
s2
∈ R′. By condition (I),

s1S ∩ s2R 6= ∅, so there exist r ∈ R, s ∈ S such that s2r = s1s = t ∈ S, and by definition of
the equivalence,

a1
s1

=
a1s

s1s

a2
s2

=
a2r

s2r

And now the versions on the right sides of the respective equalities have the same “denomi-
nator,” so we can add them in the usual way.

a1
s1

+
a2
s2

:=
a1s+ a2r

t
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where t = s2r = s1s. Then one checks that this addition is well-defined, and is is not too
hard to verify that φ is additive. It is also easy to see that

kerφ = {r ∈ R : rs = 0 for some s ∈ S}

Multiplication in R′ is defined as follows. Given fractions a1
s1
, a2
s2

, by (I) a2S ∩ s1R 6= ∅, so

there exists r ∈ R and s ∈ S so that s1r = a2s. Then we define10

a1
s1
· a2
s2

:=
a1r

s2s

Then one checks that the multiplication is is well defined, with identity 1
1
, and that φ is

multiplicative, so φ is a ring homomorphism.

Remark 4.13. The ring R′ from the previous proof is usually denoted RS−1.

Corollary 4.14. If S is a right denominator set, then φ : R → RS−1 is the localization of
R at S. In particular, there exists a unique isomorphism ω : RS → RS−1 such that ωεS = φ.

Proof. Just show that φ : R → RS−1 satisfies the same universal property as εS. Details
skipped.

4.2 Localization of arbitrary categories

Localization in categories bears a lot of resemblances to localizing an arbitrary associative
unital ring.

4.2.1 General localization

We start out with a very general construction - given any category (no assumptions about
being additive, abelian, or triangulated), and any class of morphisms, we can “‘formally
invert” those morphisms to form a new category in which those morphisms are isomorphisms.
We also get a morphism from our original category to the localized category, paralleling the
localization morphism from a ring to its localization.

However, as we’ll soon see, this general localization construction fails to have many useful
and desirable properties, so we’ll soon abandon it in favor of another localization construction
which depends upon imposing categorical analog of properties of a right denominator set,
in order to have a localization construction with a categorical analog of properties of a right
ring of fractions.

Theorem 4.15. Let A be a category, and S any class of morphisms in A. Then there exists
a category A[S−1] and a functor Q : A → A[S−1] such that

1. Q(s) is an isomorphism for all s ∈ S
10The intuition behind this definition is that

(a1s
−1
1 )(a2s

−1
2 ) = a1(s−11 a2)s−12 = a1(rs−1)s−12 = (a1r)(s−1s−12 ) = (a1r)(s2s)

−1
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2. Q is universal with this property. More precisely, if F : A → B is a functor such
that F (s) is an isomorphism for every s ∈ S, then there exists a unique functor G :
A[S−1]→ B such that the following diagram commutes.

A B

A[S−1]

F

Q G

Remark 4.16. As usual, a universal property such as the (2) above means that the category
A[S−1] is unique up to isomorphism. However, now that we’re working with categories,
isomorphism is a much stronger notion than the analogous condition of isomorphism in
the category of rings. Usually we consider categories basically “the same” if they are just
equivalent, which is significantly weaker than isomorphism of categories. Just something to
keep in mind.

Proof. The objects of A[S−1] are just the objects of A. For the morphisms, we do something
more convoluted. Given two objects X, Y in A, define a directed edge between them to
be either a homomorphism f : X → Y with f ∈ HomA(X, Y ), or for s ∈ S ∩ HomA(X, Y ),
we have a directed edge Y

s←− X. Then define a path between two objects M,N in A to be
a sequence of objects L0 = M,L1, L2, . . . , Ln = N connected by directed edges. Note that
for s ∈ S ∩ HomA(X, Y ), we have two distinct directed edges

X
s−→ Y Y

s←− X

Next we define four elementary transformations of paths, which we depict in the table.

Original Replacement Requirements

X
f−→ Y

g−→ Z X
gf−→ Z None

X
s−→ Y

s←− X X
IdX−−→ X s ∈ S

Y
s←− X

s−→ Y Y
IdY−−→ Y s ∈ S

X
IdX−−→ X

s←− Y X
s←− Y s ∈ S

Finally, we define two paths between objects M,N to be equivalent if they can be trans-
formed into each other using the four elementary transformations above. We omit the de-
tails, but this is an equivalence relation. Then define HomA[S−1](M,N) to be the equivalence
classes of paths under this relation.11 Composition in A[S−1] is by concatenation of paths,
and the identity morphism is the equivalence class of the path of length one consisting of
the identity morphism from A. It’s clear that composition is associative.

Next we define the functor Q : A → A[S−1]. On objects, it is just Q(M) = M . On a
morphism f : M → N in A, Q sends it to the equivalence class of that path of length one

11There is a minor set-theoretic issue here where in an arbitrary A, even if HomA(X,Y ) is a set for any
given objects X,Y , the paths from X to Y may be a proper class, if the collection of objects in A is a proper
class. So to do all this one needs to work out whether it makes sense to have equivalence classes in proper
classes, but this is beyond the scope of these notes.
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consisting of f . Let s : M → N be in S. Then Q(s) is invertible, with inverse given by the
equivalence class of the path N

s←−M .
It just remains to check that Q satisfies the universal property. Suppose F : A → B is a

functor such that F (s) is an isomorphism for all s ∈ S. Define G : A[S−1] → B as follows.
On objects, G(M) = F (M). Given a morphism φ : M → N in A[S−1], choose a path

representing it. For directed edges which are morphisms in A, denote them by Li
fi−→ Li+1

and for directed edges coming from elements of S, denote them by Li
ti←− Li+1.

M = L0
f0−→ L1

t1←− L2
f2−→ . . .

fn−→ Ln = N

Each ti is a morphism Li → Li+1 in A, and F (ti) is an isomorphism in B. We denote the
inverse by F (ti)

−1. Applying F to each fi and taking the inverse for each ti, we obtain a
path (consisting of actual morphisms) in B.

F (M) = F (L0)
F (f0)−−−→ F (L1)

F (t1)−1

−−−−→ F (L2)
F (f2)−−−→ . . .

F (fn)−−−→ F (Ln) = F (N)

We define G(φ) to be the composition along this path in B. That is,

G(φ) = F (fn) ◦ F (fn−1) ◦ · · · ◦ F (f2) ◦ F (t1)
−1 ◦ F (f0)

It is somewhat tedious to verify that this definition does not depend on the choice of path
representing φ, this involves working with the elementary transformations, so we omit the
verification. After this is verified, we have a well defined assignment

G : HomA[S−1](H,M)→ HomB(G(M), G(N))

making G a functor. Lastly, it is immediate from the definition of G that G◦Q = F , but we

spell it out. Given a morphism M
f−→ N in A, the image under Q is the equivalence class of

the path of length one consisting of f . By definition of G, applying G to the equivalence class

is just choosing a representive and applying F to each edge. We can just choose M
f−→ N as

our represenative, so then G ◦Q(f) = F (f).
Lastly, we need to check that G is unique. It suffices to check that G is uniquely de-

termined on edges, but this is immediate from the commutative diagram which G has to
satisfy, and the fact that even in arbitrary categories, 2-sided inverses are unique.

Definition 4.17. The functor Q : A → A[S−1] in the theorem is called the localization
functor.

Remark 4.18. The previous construction is as general as possible. We put no restrictions
on the category A, or on the collection of morphisms to invert. However, the resulting path
category A[S−1] is incredibly unwieldy to work with, so it is necessary to understand what
additional conditions on S give some more control of A[S−1].

4.2.2 Localizing classes

Next up we define our categorical analog of right denominator sets. The first few proper-
ties are just categorical versions of being a multiplicative subset, then we get to the right
denominator set properties.
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Definition 4.19. Let A be a category and S a class of morphisms in A. S is a localizing
class if it satisfies

(LC1) For all objects M of A, IdM ∈ S.

(LC2) If s, t ∈ S can be composed, then their composition is in S.

(LC3a) For any morphisms M
f−→ N and L

s−→ N with s ∈ S, there exist morphisms K
g−→ L

and K
t−→M with t ∈ S such that the following diagram commutes.

K L

M N

t

g

s

f

(LC3b) For any morphisms N
f−→ M and N

s−→ L with s ∈ S, there exist morphisms L
g−→ K

and M
t−→ K with t ∈ S such that the following diagram commutes.

K L

M N

g

t s

f

(LC4) For any morphisms f, g : M → N ,

∃s ∈ S, sf = sg ⇐⇒ ∃t ∈ S, ft = gt

Remark 4.20. We give some intuition behind the conditions (LC1)-(LC4). Conditions
(LC1) and (LC2) are analogous to saying that S is a multiplicative subset of a ring. (LC3)
is analogous to the right Ore condition aS∩ sR 6= ∅, and (LC3b) is analogous to the left Ore
condition. (LC4) is analogous to condition (II) for rings, which said

s ∈ S, at = 0 =⇒ ∃t ∈ S, at = 0

In fact, if A is an additive category, then (LC4) is equivalent to something looking exactly
like condition (II). So we think of conditions (LC1)-(LC4) as saying that S is a left and right
denominator set, in a categorical sense.

Remark 4.21. It is possible to think of a ring as a category, and make the previous analogies
more precise. Let R be an associative unital (not necessarily commutative) ring. Associated
to R is a category R with one object ∗, and morphisms given by elements of R. Composition
of morphisms is multiplication in R, and HomR(∗, ∗) is an abelian group under addition in
R.

Let S be a set of morphisms in R, a.k.a. a subset of R. Then condition (LC1) is
equivalent to S containing 1R, and condition (LC2) is equivalent to S being closed under
multiplication. I don’t have the patience to work it out, but presumably condition (LC3a)
is equivalent to the right Ore condition, (LC3b) is equivalent to the left Ore condition, and
(LC4) is equivalent to property (II).
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Our next objective is to prove the following.

Proposition 4.22. Let S be a localizing class in a category A and Q : A → A[S−1] the
localization functor. Every morphism in A[S−1] can be represented in the form Q(f)◦Q(s)−1

with s ∈ S, and also in the form Q(t)−1 ◦Q(g) with t ∈ S.

First, a remark and then a lemma.

Remark 4.23. Let S be a localizing class, let s : Y → Z and t : X → Y be in S, and
consider the morphism φ : Z → X in A[S−1] which is the equivalence class of the path

· s←− · t←− ·

We use dots to represent all the objects, because they aren’t important, other than the fact
that we can compose s, t. Using elemenetary transformations, both of the following paths
reduce to the identity.

· t−→ · s−→ · s←− · t←− ·

· s←− · t←− · t−→ · s−→ ·

Thus the equivalence class of the path

· t−→ · s−→ ·

is inverse to the morphism φ in A[S−1]. But again by the elementary transformations, this
path representing φ−1 is equivalent to the path

· s◦t−→ ·

By (LC2), s ◦ t ∈ S, so we have a path

· s◦t←− ·

which clearly represents the inverse of φ−1. That is to say, φ is also represented by the path

· s◦t←− ·

To summarize, if s, t ∈ S can be composed appropriately, then the elementary transforma-
tions allow the substitution

· s←− · t←− ·  · s◦t←− ·

Lemma 4.24. Let S be a localizing class in a category A and Q : A → A[S−1] the localizing
functor. Every morphism in A[S−1] can be written in the form(

Q(f1) ◦Q(s1)
−1
)
◦
(
Q(f2) ◦Q(s2)

−1
)
◦ · · · ◦

(
Q(fn) ◦Q(sn)−1

)
for some morphisms f1, . . . , fn from A and morphisms s1, . . . , sn ∈ S.
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Proof. We start with an arbitrary morphism g : M → N in A[S−1], and choose a path
representing it.

M = L0
g1−→ L1 → · · · → Ln = N

The picture above is somewhat deceptive because we don’t know yet that the morphisms are

rightward oriented, but it’s just a picture. By adding either L0
Id−→ L0 or L0

Id−→ L0
Id←− L0

to the start, we can assume that the starting edge is rightward oriented, and similarly by

adding Ln
Id←− Ln or Ln

Id−→ Ln
Id←− Ln to the end, we can sassume the path ends with a

leftward oriented edge.
Next, any two consecutive rightward oriented edges can be replaced by their composition,

using an elementary transformation. Similarly, if we have two consecutive leftward oriented

edges Li
si←− Li+1

si+1←−− Li+2, with si, si+1 ∈ S, then by remark 4.23, we can use the elementary

transformations to substitute a single leftward oriented edge Li
si+1◦si←−−−− Li+2.

So we can combine any consecutive edges in the same direction, and force our path to
start with a forward edge and end with a backward edge. So our path has the form

· → · ← · → · ← · → · · · → · ← ·

Then we apply Q to this path, and we the same morphism in A[S−1], since we only modified
the path representing it using elementary transformations.

Now we can prove proposition 4.22, which we restate for convenience.

Proposition 4.25. Let S be a localizing class in a category A and Q : A → A[S−1] the
localization functor. Every morphism in A[S−1] can be represented in the form Q(f)◦Q(s)−1

with s ∈ S, and also in the form Q(t)−1 ◦Q(g) with t ∈ S.

Proof. By lemma 4.24, we can write a morphism in the form(
Q(f1) ◦Q(s1)

−1
)
◦ · · · ◦

(
Q(fn) ◦Q(sn)−1

)
If we can show that given such a representation, we can always reduce the length and
express it in the same form with < n terms, then by induction we can write every morphism
as Q(f) ◦Q(s)−1. Assume n > 1. Then consider the first few parts of the path.

Q(f1) ◦Q(s1)
−1 ◦Q(f2) ◦Q(s2)

−1

By (LC3a), there exists morphisms g, t with t ∈ S making the following diagram commute.

K L

M N

g

t s1

f2

So s1g = f2t, and applying Q and doing some rearranging, Q(s1)
−1Q(f2) = Q(g)Q(t)−1. So

Q(f1) ◦Q(s1)
−1 ◦Q(f2) ◦Q(s2)

−1 = Q(f1) ◦Q(g)Q(t)−1 ◦Q(s2)
−1 = Q(f1g) ◦Q(s2t)

−1

So we can always reduce the length, completing the induction. Regarding the statement of
the proposition regarding writing any morphism in the form Q(t)−1Q(g)−1, the argument is
exactly analogous, but requires (LC3b) for the induction step.
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Remark 4.26. As far as I can tell, the preceding proposition doesn’t depend on property
(LC4) directly or indirectly, so it should hold even if S is just a class satisfying (LC1)-(LC3).
This probably never matters, but you never know.

Remark 4.27. Regarding our eventual goal of defining the derived category, we will even-
tually show that if A is an abelian category with homotopy category K(A) and S is the
class of quasi-isomorphisms in K(A), then

1. S is a localizating class, so

2. We can define the derived category of A as D(A) := K(A)[S−1].

3. The derived category D(A) inherits a triangulated structure from K(A).

4.2.3 Roofs

We continue our discussion of localized categories A[S−1] when S is a localizing class, but
develop some terminology of roofs to describe the morphisms in A[S−1] in a different way.

Definition 4.28. Let A be a category and S a localizing class of morphisms in A. For s ∈ S,
the morphism Q(f) ◦Q(s)−1 in A[S−1] is represented by a left roof, which is a diagram

L

M N

f
∼

s

The roof above is from M to N . Similarly, Q(t)−1 ◦ Q(g) with t ∈ S is represented by a
right roof which looks like

L

M N

g

∼
t

The ∼ symbols are just used to indicate elements of S, and remind us that in A[S−1] they
are isomorphisms.

Remark 4.29. We reinterpret proposition 4.25 as saying that every morphism in A[S−1]
can be represented by a right roof and by a left roof. However, the question still remains:
when do two left roofs represent the same morphism? We answer this eventually in lemma
4.44.

Definition 4.30. Suppose we have two left roofs both from M to N .

L K

M N M N

f
∼

s g
∼

t
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We say these left roofs are equivalent if there exist morphisms p : H → L and q : H → K
such that sp, tq ∈ S and making the following diagram commute.12

H

L K

M N

p q

∼
s

f

g

t

∼

Remark 4.31. Equivalence of right roofs is defined analogously.

Lemma 4.32. Equivalence of left roofs is an equivalence relation.

Proof. Reflexivity and symmetry are easy. We prove transitivity. Suppose we have three left
roofs from M to N , where the first two are equivalent and the second two are equivalent.

L K H

M N M N M N

f
∼

s g
∼

t k
∼

u

From the equivalences, we get the following commutative diagrams.

P Q

L K K H

M N M N

p q r v

∼
s

f

g

t

∼
∼

t
g

k
u

∼

with sp = tq, tr = uv ∈ S. By (LC3a), there is a commutative diagram

R Q

P M

a

z tr

sp

with z ∈ S. This fits into a giant diagram

R

P Q

L K H

M N

∼
z a

p q r v

∼
s

f

t g

u
k

12The diagram says sp = tq so the requirement that both lie in S is redundant.
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Be careful with this diagram. Everything commutes except possibly the top square involving
R,P,Q,K commutes; we do NOT know that ra = qz, but it turns out this is not necessary.
Since sp ∈ S and z ∈ S by (LC2) spz = tra = uva ∈ S. Condensing the diagram a bit, we
have

R

L H

M N

∼
pz va

∼
s

f

k
u

∼

This gives the required equivalence between the two roofs

L H

M N M N

f
∼

s k
∼

u

Remark 4.33. I didn’t use (LC4) in the previous argument, but when my professor did it
he used (LC4) somewhere, but I didn’t quite understand why it was needed. Perhaps my
argument is wrong and the fix requires (LC4), I wouldn’t be surprised.

Remark 4.34. A similar argument shows that the analogous relation on right roofs is also
an equivalence relation.

Lemma 4.35. If two left roofs are equivalent, then they represent the same morphism in
A[S−1].

Proof. Consider the roofs

L K

M N M N

f
∼

s g
∼

t

If they are equivalent, then we have our commutative diagram

H

L K

M N

p q

∼
s

f

g

t

∼

with sp ∈ S. So Q(sp) = Q(s)Q(p) is an isomorphism (in A[S−1]). Since s ∈ S, Q(s) is an
isomorphism, so Q(p) is also an isomorphism. Similarly, Q(q) is an isomorphism. So

Q(f)Q(s)−1 = Q(fp)Q(sp)−1 = Q(gq)Q(tq)−1 = Q(g)q(t)−1 = Q(g)Q(t)−1
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The above is an equality of morphisms in A[S−1], between the morphisms represented by
our two roofs.

Remark 4.36. We now describe a bijection between equivalence classes of left roofs and
equivalence classes of right roofs. We start with a left roof.

L

M N

f
∼

s

By (LC3b), there exist morphisms t, g with t ∈ S fitting into the following commutative
square.

K M

N L

g

t s

f

Since t ∈ S, the following is a right roof.

K

M N

g

∼
t

This associates a left roof to a right roof. There is a great deal of checking involved, but
the association of the equivalence class of the first roof above to the equivalence class of the
second roof is a bijection. We omit the details. The main purpose of this is to say that
working with left roofs exclusively loses no generality.

Definition 4.37 (Composition of roofs). We now define composition of left roofs. Suppose
we have two left roofs, from M to N and N to P respectively.

L K

M N N P

f
∼

s g

∼
t

By (LC3a), there is a commutative diagram

U K

L N

k

u t

f

with u ∈ S. This fits into the following commutative diagram.
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U

L K

M N P

∼
u k

f
∼

s g

∼
t

By (LC2) su ∈ S, so we have a left roof from M to P .

U

M P

∼
su gk

We define this to be the composition of the two roofs we started with.

Lemma 4.38. Composition of left roofs has the following properties.

1. Composition of left roofs descends to equivalence classes. That is, if x, x′ are equivalent
roofs and y, y′ are equivalent roofs, then the composition x ◦ y is equivalent to the
composition of x′◦y′. (Assuming x, y have domain/codomain such that the composition
x ◦ y makes sense.)

2. Composition is associative.

3. Composition has an identity given by the (equivalence class of) the left roof

M

M M

∼
IdM IdM

In summary, if S is a localizing class of morphisms in a category A, then there is a category
A`S whose objects are objects of A, and whose morphisms are equivalence classes of left roofs
with composition define as above.

Proof. Very boring details.

Remark 4.39. Composition is defined for right roofs analogously with that of left roofs,
and there is similarly a category ArS with morphisms given by equivalence classes of right
roofs. Additionally, the bijection between equivalence classes of left and right roofs preserves
the respective compositions, which induces an equivalence of categories A`S ∼= ArS. So we
just denote the category of left roofs by AS.

Definition 4.40. We define a functor Q : A → AS as follows. On morphisms Q is the
identity. On a morphism f : M → N in A, define Q(f) to be the equivalence class of the
roof
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M

M N

∼
IdM f

Some verification is required, but this is fact a covariant functor.

Lemma 4.41. The functor Q above satisfies

1. For s ∈ S, Q(s) is an isomorphism in AS.

2. Q is universal with this property. That is, if F : A → B is a functor such that F (s) is
an isomorphism for every s ∈ S, then there exists a unique functor G : AS → B such
that the following diagram commutes.

A B

AS

F

Q G

Proof. The first property is easy, since Q(s) is represented by

M

M N

∼
IdM s

which has inverse represented by

M

M N

∼
s IdM

Now for the universal property. Suppose we have a functor F : A → B such that F (s) is an
isomorphism for s ∈ S. We define a functor G : AS → B as follows. On objects, G is the
identity. Let φ : M → N be a morphism in AS, and choose a roof representing φ.

L

M N

∼
s f

Define G(φ) = F (f) ◦ F (s)−1. It is obvious that F = G ◦ Q. It is not immediately obvious
that G is well defined on equivalence classes of morphisms, but we omit this verification. It
is obvious that G takes the identity morphism to the identity morphism, but it remains to
check is that G respects composition. Given another morphism ψ : N → P , we represent it
also by a roof.

K

N P

∼
t g
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Then the composition ψ ◦ φ is represented by a roof as below, where U, u, h are constructed
using (LC3a).

U

L K

M N P

∼
u h

∼
s f

∼
t g

Then assuming thatG is well defined with respect to the equivalence of roofs, we can calculate
that

G(ψφ) = F (gh)F (su)−1 = F (g)F (h)F (u)−1F (s)−1 = F (g)F (t)−1F (f)F (s)−1 = G(ψ)G(φ)

Hence G is a functor. Finally, we need to verify uniqueness of G. This is fairly obvious from
the diagram which G satisfies, and thinking about what G does to roofs of the form

M

M N

∼
IdM f

and

M

M N

∼
s IdM

We summarize much of our preceeding work in the following theorem.

Theorem 4.42. Let A be a category and S a localizing class of morphisms in A. Then
Q : A → AS satisfies the same universal property as the localization functor Q : A → A[S−1],
so there is a unique isomorphism AS ∼= A[S−1] making the following diagram commute.

A

A[S−1] AS

Q Q

∼=

Proof. Immediate from lemma 4.41.

Lemma 4.43. Let A be a category and S a localizing class. Two roofs

L K

M N M N

f
∼

s g
∼

t

73



are equivalent (as roofs) if and only if the paths

M
s←− L

f−→ N M
t←− K

g−→ N

are equivalent (using elementary transformations).

Proof. No idea how to prove this.

Proposition 4.44. Two left roofs are equivalent if and only if they represent the same
morphism in A[S−1].

Proof. If two left roofs are equivalent, lemma 4.35 says that they represent the same mor-
phism, so we just need to prove the converse. Suppose we have two roofs which represent
the same morphism φ : M → N in AS.

L K

M N M N

f
∼

s g
∼

t

Under the isomorphism in theorem 4.42, these roofs each respectively correspond to the
equivalence classes of the paths

M
s←− L

f−→ N M
t←− K

g−→ N

in A[S−1]. Since they represent the same morphism φ, they are equivalent paths, so by
lemma 4.43, the roofs are equivalent.

Corollary 4.45. If S is a localizing class, every morphism in A[S−1] can be written in the
form Q(f)Q(s)−1 and in the form Q(t)−1Q(g).

Proof. Immediate from theorem 4.42.

4.2.4 Localization of subcategories

Let A be a category and B a subcategory of A. There is an “embedding” functor

B → A

which is the identity on both objects and morphisms. This is always faithful, but may fail
to be full or essentially surjective. If B is a full subcategory, then this is full, so it is fully
faithful.

Let S be a localizing class in A. We can then consider SB which is the subclass of S
which are morphisms in B. It is not necessarily the case that SB is a localizing class in B.
However, if SB is a localizing class in B, then the embedding functor extends to a functor

B[S−1B ]→ A[S−1]

in the only possible reasonable way. It is the identity on objects, and “inclusion” of left
roofs. That is to say, a morphism in B[S−1B ] is represented by a left roof, which we can then
think of as representing a morphism in A[S−1].

This induced functor may fail to be faithful. The following proposition gives an additional
condition which we can impose in order to make the induced embedding fully faithful.
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Proposition 4.46. Let B be a full subcategory of A and S a localizing class in A. Suppose
that

1. SB is a localizing class in B.

2. For any morphism s : A→ B in S with B ∈ Ob(B), there exists a morphism s′ : B′ →
A in A sith B′ ∈ Ob(B) such that ss′ ∈ SB ⊂ S.13

B′ A Bs′ s

Then the functor B[S−1B ]→ A[S−1] is fully faithful.

Proof. Not very interesting.

4.3 Localization of additive categories

Next we want to see that localizing an additive category A results in a localized category
A[S−1] which also has an additive structure. The result is as you would expect - everything
works out as well as possible. If A is additive and S is a localizing class, then we can reuse
the same localized category A[S−1] ∼= AS and put an additive structure on it, and show that
the localization functor Q is an additive functor, and that it is universal among additive
functors which take morphisms in S to isomorphisms.

Remark 4.47. If A is additive, we can restate (LC4’). The new version is: for f : M → N ,

∃s ∈ S, sf = 0 ⇐⇒ ∃t ∈ S, tf = 0

Our first step towards giving A[S−1] an additive structure is to define addition of morphisms.
Since we think of roofs as “fractions,” it makes sense that in order to “add” roofs we would
need to find “common denominators.” The next lemma takes care of this. It doesn’t even
require additivity of the category A.

Lemma 4.48. Let A be a category and S a localizaing class of morphisms in A. Suppose
we have a collection of roofs

Li

M N

∼
si fi

representing morphisms φi : M → N in A[S−1], for i = 1, 2, . . . , n. Then there exists an
object L in A, a morphism s : L→M in S, and morphisms gi : Li → N such that the roof

L

M N

∼
s gi

13Since B is a full subcategory, requiring ss′ ∈ SB is equivalent to requiring ss′ ∈ S.
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represents the morphism φi.

Proof. We induct on n. The case n = 1 is vacuous, so assume n ≥ 2. We are given n
roofs involving Li, si, fi representing morphisms φi for i = 1, . . . , n. By inductive hypothesis,
for i = 1, . . . , n − 1, we have an object K, a morphism t : K → M in S, and morphisms
hi : K → N so that φi is represented by the roof

K

M N

∼
t hi

By (LC3a), there exists an object L and morphisms u : L → K, ` : L → Ln with u ∈ S,
making the following diagram commute.

L Ln

K M

`

u sn

t

Set s = tu = sn` : L → M , and note this is in S. For i = 1, . . . , n − 1 set gi = hiu and set
gn = fn`. Then for i = 1, . . . , n− 1 the diagram

L

K L

M N

∼
u IdL

∼
t

hi

gi=hiu

s=tu

gives an equivalence between the roofs

K L

M N M N

∼
t hi

∼
s gi

so for i = 1, . . . , n− 1, the roof

L

M N

∼
s gi

represents the morphism φi. For i = n, the diagram

L

L Ln

M N

∼
IdL `

∼
s

gn=fn`

fn
sn
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gives an equivalence between the roofs

L L

M N M N

∼
s gn=fn`

∼
sn fn

Since the roof on the right represents φn, so does the roof on the left. This completes the
induction.

The preceeding result allows us to define addition of roofs if A is additive.

Definition 4.49. Let A be an additive category and S a localizing class in A. Let φ, ψ :
M → N be morphisms in A[S−1]. By the preceeding lemma, we can represent φ, ψ using
roofs of the form

L L

M N M N

∼
s f

∼
s g

We then define φ+ ψ to be the equivalence class of the roof

L

M N

∼
s f+g

where f + g is the addition in HomA(L,N). It is not trivial to check that this is well defined
on equivalence classes, but we omit the details. As long as it is well defined, it is obvious that
this gives an abelian group structure to HomA[S−1](M,N) since all the properties (identity,
associativity, commutativity, inverses) are inherited from HomA(M,N).

Proposition 4.50. Let A be an additive category and S a localizing class of morphisms in
A. Then A[S−1] is an additive category. Specifically,

1. For any objects M,N,P , the composition operation

HomA[S−1](M,N)× HomA[S−1](N,P )→ HomA[S−1](M,P )

is additive in each variable.

2. The zero object in A[S−1] is the same zero object as in A.

3. The biproduct of two objects M,N in A[S−1] is the same biproduct M ⊕ N from A,
with slightly modified canonical morphisms.

4. The localization functor Q : A → A[S−1] is additive.
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5. The localization functor Q : A → A[S−1] is universal among additive functors which
take S to isomorphisms. That is, if F : A → B is an additive functor such that
F (s) is an isomorphism for every s ∈ S, then there exists a unique additive functor
G : AS → B such that the following diagram commutes.14

A AS

B

Q

F G

∃!

Proof. (1) First we address additivity in the left variable. Let φ, ψ : N → P and χ : M → N
be morphisms in A[S−1]. We need to show that

(φ+ ψ)χ = φχ+ ψχ

Using lemma 4.48, we can represent φ, ψ by roots with a common denominator s.

L L K

N P N P M N

f
∼

s g
∼

s h
∼

t

φ ψ χ

Then by (LC3a), there exist morphisms u : U → K and v : U → L so that sv = hu and
u ∈ S.

U

K L

M N P

∼
u v

∼
t h

∼
s f

Thus the composition φχ is represented by the roof

U

M P

∼
tu fv

φχ

Similarly, ψχ is represented by the roof

14This universal property is very subtly different than the universal property we already know that Q
satisfies. The only differences are that now we assume F is additive, and that the constructed functor G is
additive.
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U

M P

∼
tu gv

ψχ

Then by definition of addition of roofs, φχ+ ψχ is represented by the roof

U

M P

∼
tu fv+gv

φχ+ ψχ

We know that φ+ χ is represented by the roof

L

N P

∼
s f+g

φ+ χ

so (φ+ ψ)χ is represented by

U

M P

∼
tu (f+g)v

(φ+ ψ)χ

Since A is additive, (f + g)v = fv + gv, so (φ + ψ)χ and φχ + ψχ are represented by the
same roof, hence are equal morphisms in A[S−1]. This proves that composition in A[S−1] is
additive in the left argument. A similar argument works for additivity in the right argument.
It is a bit more complicated because the addition is happening on the left side of the roofs,
in the “denominator” of the “fraction,” but it’s not too much more complicated, so we omit
it.

(2) Omitted, not very complicated.
(3) Omitted, not very interesting.
(4) Obvious.
(5) Mostly obvious. Just examine the construction of the functor G in lemma 4.41, and

additivity of G follows from the fact that F is additive.

4.3.1 Kernel of the localization functor

We continue to discuss the situation where A is an additive category, S is a localizaing class
of morphisms in A, and Q : A → A[S−1] is the localization functor. We want to describe
the “kernel” of the localization functor Q, that is, which morphisms and objects in A are
sent to zero morphisms and the zero object of A[S−1].
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First we recall what happens with rings. In a commutative associative unital ring R with
a multiplicative subset S, the localization morphism ε : R→ RS has kernel

ker ε = {a ∈ R : sa = 0 for some s ∈ S}

In the noncommutative case, where R is only an associative unital ring, the localization still
exists but we have far less control over and knowledge about the localization RS and the
localization morphism ε. However, we did show that if S is a right denominator set, then the
kernel still has the same description as above, though the description is not symmetric in the
sense that sa = 0 and as = 0 are not equivalent. If S is both a left and right denominator
set, then

ker ε = {a ∈ R : sa = 0 for some s ∈ S} = {a ∈ R : as = 0 for some s ∈ S}

so in this situation we regain some symmetry in the description of the kernel. Since we
modeled the definition of localizing class on right and left denominator sets, it should not
be too surprising that we get an analogous description of when morphisms in the localized
category A[S−1] are zero.

Lemma 4.51. Let A be an additive category and S a localizing class in A. Let φ : M → N
be a morphism in A[S−1], represented by a left roof

L

M N

∼
s f

The following are equivalent.

1. φ = 0 (the zero morphism in HomA[S−1](M,N))

2. There exists t ∈ S such that ft = 0.

3. There exists t ∈ S such that tf = 0.

Proof. The equivalence (2) ⇐⇒ (3) is immediate from (LC4) or (LC4’).
(1) =⇒ (2) Suppose φ = 0. From the description of φ as a left roof, φ = Q(f)Q(s)−1 = 0.

Since Q(s) is an isomorphism, this implies Q(f) = 0. That is to say, we have an equivalence
of roofs

U

L L

L N

t u

1

f1

0

Since this is an equivalence of roofs, 1 ◦ t = t ∈ S, and by commutativity of the diagram
ft = 0.

(2) =⇒ (1) Suppose ft = 0 for some t ∈ S. Then Q(f)Q(t) = 0. Since Q(t) is an
isomorphism, Q(f) = 0. So φ = Q(f)Q(s)−1 = 0.

80



Corollary 4.52. Let f : M → N be a morphism in A. The following are equivalent.

1. Q(f) = 0

2. There exists t ∈ S such that ft = 0.

3. There exists t ∈ S such that tf = 0.

Proof. Apply previous lemma with φ = Q(f).

The previous corollary addresses the question of when a morphism becomes zero in the
localized category, now we consider when objects become isomorphic to the zero object.

Corollary 4.53. Let M be an object in A. The following are equivalent.

1. Q(M) is (isomorphic to) the zero object (in A[S−1]).

2. There exists an object N in A such that the zero morphism N
0−→M is in S.

3. There exists an object N in A such that the zero morphism M
0−→ N is in S.

Proof. (1) =⇒ (2) Suppose Q(M) ∼= 0. Then Q(IdM) = 0. By the previous corollary, this
implies that there exists a morphism t : N → M with t ∈ S so that t ◦ IdM = 0, but this
just says t = 0.

(1) =⇒ (3) Similar to (1) =⇒ (2).

(2) =⇒ (1) Suppose N
0−→M is an isomorphism. Then the composition

Q(M)
Q(0)−−→ Q(N)

Q(0)−1

−−−−→ Q(M)

is both the zero morphism and the identity on Q(M), so Q(M) must be the zero object.
(3) =⇒ (1) Similar to (2) =⇒ (1).

4.4 Localization of abelian categories

Next up we discuss localization in the situation where A is abelian. We’ll eventually prove

Theorem 4.54. Let A be an abelian category and S a localizing class in A. Then A[S−1]
is abelian, and Q : A → A[S−1] is exact. 15

Before this, some build up of lemmas. First, a lemma regarding how the localization functor
Q acts on epi- and monomorphisms.

Proposition 4.55. Let A be an additive category and S a localizing class in A, and Q :
A → A[S−1] the localization functor. Let f : M → N be a morphism in A.

1. If f is a monomorphism, then Q(f) is a monomorphism.

2. If f is an epimorphism, then Q(f) is an epimorphism.

15Probably there is an analogous universal property in which the functor G is exact, but I’m not sure.
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Proof. We prove (1), the proof of (2) is similar, or can be obtained by passing to the opposite
category. Suppose φ : L→M is a morphism in A[S−1] such that Q(f)φ = 0. To show that
Q(f) is a monomoprhism, it suffices to show that φ = 0. Represent φ by a left roof

U

L M

∼
s g

so φ = Q(g)Q(s)−1. Then

0 = Q(f)φ = Q(f)Q(g)Q(s)−1 = Q(fg)Q(s)−1

Since Q(s) is an isomorphism, this implies Q(fg) = 0. Then by corollary 4.52, there exists
t ∈ S so that fgt = 0 (this is an equality of morphisms in A). Since f is a monomorphism,
gt = 0. So

0 = Q(gt) = Q(g)Q(t)

Since Q(t) is an isomorphism, this implies Q(g) = 0. So φ = Q(g)Q(s)−1 = 0.

Lemma 4.56. Let A be an abelian category and S a localizing class in A. Every morphism
in A[S−1] has a kernel and cokernel.

Before the proof, we note for future reference that the proof says that basically the kernel
of a morphism is the kernel of the “numerator.” That is, a morphism φ in A[S−1] can be
written as Q(s)−1Q(g) with s ∈ S, and the kernel of φ is essentially (the image of) the kernel
of g (under Q).

Proof. Let φ : M → N be a morphism in A[S−1], and right it as a right roof, so φ =
Q(s)−1Q(g) with s ∈ S.

L

M N

g

∼
s

Since Q(s) is an isomorphism, a morphism χ : K → M is the kernel of φ if and only if it is
the kernel of Q(g). Since A is abelian, g : M → L has a kernel in A, which we denote by
k : K →M . We define χ = Q(k), and claim that χ is the kernel of Q(g) in A[S−1].

To show that χ is the kernel, we need to show that any ψ : P →M (in A[S−1]) such that
Q(g)ψ = 0 factors through Q(K). Let ψ : P →M be a morphism such that Q(g)ψ = 0. We
can write ψ as a left roof, ψ = Q(f)Q(t)−1 with t ∈ S. Then

0 = Q(g)ψ = Q(g)Q(f)Q(t)−1 = Q(gf)Q(t)−1

Since Q(t) is an isomorphism, we get Q(gf) = 0. Then by corollary 4.52, there exists
v : V → U with v ∈ S so that gfv = 0. Thus fv factors through the kernel of g. That is,
there exists a (unique) morphism w : V → K making the following diagram commute.
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V U M L

K

v

w

f g

k

Then applying Q to this,

Q(kw) = Q(fv) =⇒ Q(k)Q(w) = Q(f)Q(v) =⇒ Q(f) = Q(k)Q(w)Q(v)−1 = χQ(w)Q(v)−1

Then we can write ψ as

ψ = Q(f)Q(t)−1 = χQ(w)Q(t)Q(v)−1

so ψ factors through χ. Finally, we just need to verify that the factorization is unique.
Suppose ψ = χα = χβ for morphisms α, β. Then χ(α − β) = 0. Since k : K → M is a
monomorphism, by proposition 4.55, χ is a monomorphism so this implies α − β = 0, or
α = β.

Remark 4.57. The previous proof says a bit more than that morphisms in A[S−1] have
kernels and cokernels. It says Q(ker f) ∼= kerQ(f), and similarly Q takes cokernels to coker-
nels. This happens for both the objects and morphisms associated with the kernel/cokernel.
Because of the universal property, this isomorphism isn’t just any isomorphism, it’s a unique
isomorphism, so we can really identified Q(ker f) with kerQ(f).

Recall that in an additive category A with all kernels and cokernels, every morphism with
φ : M → N induces a morphism

φ : coker kerφ→ ker cokerφ

and that the category A is abelian if and only if φ is strict, meaning that φ is an isomorphism.

Lemma 4.58. Let A be an abelian category and S a localizing class in A. Every morphism
in A[S−1] is strict.

Proof. Let φ : M → N be a morphism in A[S−1] and represent it by a left roof, so φ =
Q(f)Q(s)−1 with s ∈ S, for some morphisms f : L→ N and s : L→M . Since A is abelian,
f is strict. We depict this in the following commutative diagram.

ker f L N coker f

coker k ker c

k f c

f

∼=

We can apply Q to this diagram. By remark 4.57, we can identify Q(ker f) with kerQ(f)
(and identify the associated morphisms). On objects Q(L) = L and Q(N) = N so we omit
the Q’s for those.

kerQ(f) L N cokerQ(f)

cokerQ(k) kerQ(c)

Q(k) Q(f) Q(c)

Q(f)
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Because of all these natural identifications, we also identify Q(f) = Q(f). Then

φ = Q(f) ◦Q(s)−1 = Q(f) ◦Q(s)−1

must be an isomorphism, because Q(s)−1, Q(s)−1 are isomorphisms.

Corollary 4.59. If A is abelian and S is a localizing class in A, then A[S−1] is abelian.

Finally, we want to show that the localization functor Q is exact.

Lemma 4.60. Let A be an abelian category and S a localizing class in A. The localization
functor Q : A → A[S−1] is exact.

Proof. Let M
f−→ N

g−→ P be an exact sequence in A, so gf = 0 and the natural map
im f = coker ker f = ker coker f → N is ker g. When we apply Q to obtain

QM
Qf−→ QN

Qg−→ QP

it is clear that Qg◦Qf = 0. Since we also know Q preserves kernels and cokernels, Q(im f)→
QN is the the kernel of Qg. Thus Q is exact.

Remark 4.61. The preceeding lemma provides the last step in the proof of Theorem 4.54.

4.4.1 Thick subcategories

Definition 4.62. Let A be an abelian category and B a full subcategory. B is a thick
subcategory if for any short exact sequence 0→ X → Y → Z → 0 in A, we have

Y ∈ ob(B) ⇐⇒ X,Z ∈ ob(B)

Equivalently, B is closed under taking subobjects, quotients, and extensions.

Remark 4.63. A thick subcategory must contain the zero object, and be closed under
isomorphisms using the short exact sequences

0→ N
∼=−→M → 0→ 0

Sometimes a full subcategory which is closed under isomorphisms of objects is called a
strictly full subcategory.

Remark 4.64. Some sources refer to our definition of a thick subcategory above as a Serre
subcategory, but also sometimes Serre subcategory means something slightly different than
this. We’ll stick to the terminology “thick.”

Lemma 4.65. A thick subcategory of an abelian category is abelian.

Proof. Mostly obvious. Clearly the thick subcategory contains all kernels and cokernels
because it contains all subobjects and quotients. It contains all biproducts because the
biproduct is an extension. Since every morphism in the ambient category is strict, this also
applies to the thick subcategory.
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Definition 4.66. Let A be an abelian category and B a subcategory. We define SB to be

the class of morphisms M
f−→ N in A such that the objects ker f, coker f are in B.

The next lemma describes a categorical analog of the “kernel” of the localization functor on
objects. It says that the “object kernel” of Q is a thick subcategory, and that conversely,
any thick subcategory is the “object kernel” of a suitable localization functor.

Lemma 4.67. Let A be an abelian category and B be a full subcategory.

1. Suppose S is a localizing class in A, with localization functor Q : A → A[S−1]. If
QM ∼= 0 for every M ∈ ob(B), then B is thick.

2. Suppose B is thick. Then SB is a localizing class in A.

3. Suppose B is thick and let Q : A → A[S−1B ] be the localization functor. Let M ∈ ob(A).
Then M ∈ ob(B) if and only if QM ∼= 0.

Proof. (1) Let 0 → X → Y → Z → 0 be a short exact sequence in A. Since Q is exact,
0 → QX → QY → QZ → 0 is exact in A[S−1]. So QY ∼= 0 if and only if if QX ∼= 0 and
QZ ∼= 0.

(2) For any identity morphism in A, the kernel and cokernel are zero which lie in B, so
SB satisfies (LC1). Next we show (LC2). Let s : L→M and t : M → N are in SB. Consider
the pullback square

P ker t

N M

f

g

s

which all exists in A since abelian categories always have pullbacks. Because the square is
cartesian, it follows that P ∼= ker(ts). Also, f identifies ker g and ker s, so ker g is an object
of B. Since coker ker g is a subobject of ker t, it is also in B. Now consider the short exact
sequence

0→ ker g → P → coker ker g → 0

The outer objects lie in B, so the middle one does as well because B is thick. Then it follows
that ts ∈ SB. This completes the proof of (LC2). The arguments for (LC3a) and (LC3b)
are really technical and boring, so we skip them. The proofs mostly involve a lot of thinking
carefully about more pullback squares.

(3) Suppose M ∈ ob(B). Then M
s−→ 0 has kernel M and the zero object as cokernel, so

s ∈ SB. Then Q(s) is an isomorphism QM ∼= 0 in A[S−1B ]. Conversely, suppose QM ∼= 0.

Then there exists an object N in A such that N
0−→ M is in SB. So the cokernel of this

morphisms which is M , is in B.

Example 4.68. Let A be the abelian category of vector spaces over a field F , and let B
be the full subcategory of finite dimensional vector spaces. It is not hard to see that B is
thick. The localizing class SB consists of all linear maps f : V → W such that ker f and
coker f = W/f(V ) are finite dimensional. Informally, SB consists of all linear maps that are
“almost” injective and “almost” surjective, in the sense that they are injective and surjective
up to finite dimensional subspaces.
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Definition 4.69. Let A be an abelian category and B a thick subcategory. The localized
category A[S−1B ] is called the quotient category and denoted A/B.

Theorem 4.70 (Gabriel 1962). Let B be a thick subcategory of an abelian category A. Then
there exists an abelian category A/B and an exact functor Q : A → A/B with the following
universal property: For any abelian category C and exact functor F : A → C such that
FM ∼= 0 for all M ∈ ob(B), there exists a unique exact functor G : A/B → C such that
F = GQ.

A A/B

C

Q

F G

∃!

Remark 4.71. The way Gabriel originally constructed the category A/B is different from
our localization methods, but we give a proof using localizations.

Proof. Let F be as in the statement of the theorem. We show that F takes SB to isomor-
phisms in A[S−1B ] = A/B, so it satisfies the hypothesis of proposition 4.50 part (5). Suppose

M
f−→ N is a morphism in A in SB. Then f can be factored as

M
g−→ L

h−→ N

with g an epimorphism and h a monomorphism. Then consider the short exact sequences

0→ ker f = ker g →M
g−→ L→ 0

0→ L
h−→ N → coker f = cokerh→ 0

Since F is exact, we can apply it to these and get exact sequences

0→ F (ker f)→ FM
Fg−→ FL→ 0

0→ FL
Fh−→ FN → F (coker f)→ 0

Since f ∈ SB, we know that ker f, coker f ∈ ob(B). Then they become isomorphic to zero
in A[S−1B ] by lemma 4.67 part (3). Thus Fg and Fh are isomorphisms, so Ff = F (gh) =
(Fh)(Fg) is an isomorphism. Then using the universal property from proposition 4.50, there
exists a unique additive functor G : A/B = A[S−1B ] → C making the required diagram in
Gabriel’s theorem commute. All that remains to verify is that G is exact, but we omit this
part of the proof.

4.5 Localization of triangulated categories

Our next goal is to show that if we start with a triangulated category and a localizing class
of morphisms, then the localization also has a triangulated structure, provided we impose
two additional assumptions on our localizing class. Roughly speaking, these will be

1. The localizing class is invariant under the translation functor.
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2. A jazzed up version of (TR3) involving morphisms in our localizing class.

Definition 4.72. Let C be a triangulated category with translation functor TC = [1], and
let S be a localizing class in C. S is compatible with triangulation if it satisfies

(LT1) For a morphism s in C, s ∈ S ⇐⇒ s[1] ∈ S.

(LT2) Any diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

s t s[1]

with distinguished rows and s, t ∈ S can be completed to a morphism of distinguished
triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

s t u s[1]

The axiom (LT1) says that S is invariant under the translation functor and its inverse.

Definition 4.73. Let C be a triangulated category and S a localizing class which is com-
patible with triangulation, and let Q : C → C[S−1] be the localization functor. Consider the
functor

F := QTC : C → C[S−1] M 7→ Q(M [1])

By (LT1), for s ∈ S, we know TC(s) ∈ S. So F (s) = Q(TC(s)) is an isomorphism for every
s ∈ S. Thus by the universal property of the localization, there exists a unique functor
G : C[S−1]→ C[S−1] making the following diagram commute.

C C[S−1]

C[S−1]

Q

F G

We denote G by TC[S−1]. Using the definition of F , we expand the previous diagram.

C C

C[S−1] C[S−1]

TC

Q Q

TC[S−1]

So we can characterize TC[S−1] as the unique functor making the diagram above commute.
Similarly, we can consider the composition of functors QT−1C : C → C[S−1], and apply the
same universal property to find a functor C[S−1] → C[S−1] which is inverse to TC[S−1]. So
TC[S−1] is an automorphism of C[S−1]. We call it the induced translation functor.
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Definition 4.74. Let C, S be as above. We define a triangle in C[S−1] to be distinguished
if it is isomorphic to the image of a distinguished triangle from C under the localization
functor Q. In other words, after applying Q to any distinguished triangle in C, we obtain
a distinguished triangle in C[S−1], and any triangle isomorphic to such a triangle is also
considered distinguished.

Theorem 4.75. Let C be a triangulated category and S a localizing class compatible with
triangulation. Then C[S−1] with the translation functor and distinguished triangles as defined
above is triangulated.

Proof. (TR1a), (TR1b), (TR2) are all fairly immediate from the triangulated properties of
C. (TR1c), (TR3), and (TR4) are all somewhat involved technical proofs, so we skip the
details.

Remark 4.76. It is immediate from the construction that the localization functor Q : C →
C[S−1] commutes with translation (see definition 3.9) and takes distinguished triangles to
distinguished triangles, so Q is an exact functor (see definition 3.10).

Theorem 4.77. Let C,D be triangulated categories and F : C → D an exact functor. Let
S be a localizing class in C which is compatible with triangulation such that F (s) is an
isomorphism (in D) for every s ∈ S. Then there exists a unique exact functor FS : C[S−1]→
D such that F = FSQ.

C C[S−1]

D

Q

F FS

∃!

Proof. By theorem 4.50, we know there exists a unique additive functor FS making the
required diagram commute, so it suffices to show that the functor constructed in that theorem
is exact.

We give only a brief sketch. First, one shows that FS commutes with translation, mostly
just using the fact that F commutes with translation, but this is slightly tricky. The fact
that FS takes distinguished triangles in C[S−1] to distinguished triangles in D is mostly
immediate from the construction, since by definition every distinguished triangle in C[S−1]
comes from one in C (up to isomorphism), and F takes that distinguished triangle in C to
one in D.

Recall that a functor F : C → A from a triangulated category to an abelian category
is cohomological if it takes distinguished triangles in C to exact sequences in A. More
precisely, if

X → Y → Z → X[1]

is a distinguished triangle in C, then

FX → FY → FZ

is exact in A. The next proposition says that cohomological functors on a triangulated
category always induce cohomological functors on the localized category.
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Proposition 4.78. Let C be a triangulated category and A an abelian category, and let
S be a localizing class in C which is compatible with triangulation. Let F : C → A be a
cohomological functor such that F (s) is an isomorphism for all s ∈ S. Then there exists a
unique cohomological functor FS : C[S−1]→ A such that F = FSQ.

C C[S−1]

D

Q

F FS

∃!

Proof. From theorem 4.50, we already know that a unique additive functor FS exists. We
just need to show that FS is cohomological. Let X → Y → Z → X[1] be a distinguished
triangle in C[S−1]. Then there exists a distinguished triangule U → V → W → U [1] in C
and an isomorphism of distinguished triangles in C[S−1] as below.

QU QV QW QU [1]

X Y Z X[1]

∼= ∼= ∼= ∼=

Then we apply FS to this diagram to obtain the following commutative diagram in A.

FSQU FSQV FSQW

FSX FSY FSZ

∼= ∼= ∼=

The top row of this is just FU → FV → FW , which is exact because F is cohomological.
So the bottom row is also exact, hence FS is cohomological.
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5 Derived categories

Finally we get our goal in all of this, the derived category. We fix an abelian category A,
with chain complex category C(A) and homotopy category K(A).

Remark 5.1. Recall that if two chain maps are chain homotopic, they induce the same map
on cohomology. So if f is a quasi-isomorphism and f is homotopic to g, then g is also a
quasi-isomorphism. Hence it makes sense to talk about quasi-isomorphisms in K(A), since
being a quasi-isomorphism is independent of the homotopy class representative.

Definition 5.2. Let S be the class of quasi-isomorphisms in K(A). The derived category
of A, denoted D(A), is the localization K(A)[S].

Because of theorem 4.15, this localization exists and comes with a localization functor Q
with a suitable universal property. However, we can’t do much with the localization unless
we know that S is more than just some class of morphisms. In particular, we would like to
know that S is a localizing class, and compatible with the triangulation on K(A). Before
we get to that, a short lemma regarding quasi-isomorphisms.

Lemma 5.3. Let X
f−→ Y

g−→ Z → X[1] be a distinguished triangle in K(A).

1. f is a quasi-isomorphism if and only if Z is acyclic.

2. g is a quasi-isomorphism if and only if X is acyclic.

Proof. (1) f is a quasi-isomorphism if and only if the cone Cf is acyclic, and any distinguished
triangle in K(A) is isomorphism to a cone triangle. In particular Z is isomorphic to Cf , so
Z is acyclic if and only if Cf is acyclic. (2) Similar argument as (1), or just apply rotation
to (1).

Theorem 5.4. The class S of quasi-isomorphisms in K(A) is a localizing class compatible
with triangulation.

Proof. Throughout this proof, we denote objects and morphisms in K(A) without the usual
dot to indicate grading, since it would mostly just clutter the notation.

(LC1) Obvious, the identity morphism is a quasi-isomorphism.
(LC2) Composition of quasi-isomorphisms is obviously a quasi-isomorphism.
(LC3a) Suppose we have a diagram

Z

X Y

f

s

in K(A), with s a quasi-isomorphism. To verify (LC3a) we need to complete this to a
diagram

X Z

X Y

g

t

f

s
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with t being a quasi-isomorphism. First, we use (TR1c) to extend s to a distinguished
triangle.

X
s−→ Y

i−→ U
p−→ X[1]

We know U is isomorphic to the cone of s, but this is not so important. Anyway, since s
is a quasi-isomorphism, U is acyclic by lemma 5.3. We apply (TR2) to rotate an obtain a
distinguished triangle

Y
i−→ U

p−→ X[1]
−s[1]−−−→ Y [1]

Now consider the composition if = i ◦ f : Z → U . Again using (TR1c) we extend this to a
distinguished triangle.

Z
if−→ U

r−→ V
u−→ Z[1]

Now we consider the following diagram, with the left square commuting.

Z U V Z[1]

Y U X[1] Y [1]

if

f

r

Id

u

f [1]

i p −s[1]

By (TR3), we can complete this to a morphism of triangles, so there is a morphism v : V →
X[1] making the following diagram commute.

Z U V Z[1]

Y U X[1] Y [1]

if

f

r

Id v

u

f [1]

i p −s[1]

Now apply (TR2) again to rotate this backwards, and obtain

V [−1] Z U V

X Y U X[1]

−u[1]

v[−1]

if

f

v

Id v

s i p

So we take W = V [−1] and t = −u[1] and g = v[−1] and obtain the needed completed
diagram needed for (LC3a). The morphism t = −u[1] is a quasi-isomorphism because U is
acyclic.

V [−1] Z

X Y

−u[1]

v[−1] f

s

(LC3b) Analogous argument to (LC3a).
(LC4) Since K(A) is additive, we can work with (LC4’) instead. Suppose we have a

morphism X
f−→ Y in K(A) and a quasi-isomorphism s : Y → Z such that sf = 0. We need

to construct a quasi-isomorphism t : W → X such that ft = 0. Extend s to a distinguished
triangle Y

s−→ Z → U → Y [1], and consider the folllowing diagram with distinguished rows.

91



X 0 X[1] X[1]

Y Z U Y [1]

f

− IdX[1]

f [1]

s i p

By (TR3) we can complete this to a morphism of triangles. We denote the new morphism
by −v.

X 0 X[1] X[1]

Y Z U Y [1]

f

− IdX[1]

−v f [1]

s i p

Now we apply the inverse translation functor to the right square and obtain

X X

U [−1] Y

− IdX

−v[−1] f

p[−1]

So f = p[−1] ◦ v[−1]. Now extend v[−1] to a distinguished triangle,

X
v[−1]−−−→ U [−1]→ V

t−→ X[1]

Then rotate this triangle backwards to obtain a new distinguished triangle

V [−1]
−t[−1]−−−→ X

v[−1]−−−→ U [−1]→ V

We know that v[−1] ◦ t[−1] = 0 because this triangle is distinguished. Also, U is acyclic, so
U [−1] is acyclic, so t is a quasi-isomorphism. Thus

f ◦ t[−1] = p[−1] ◦ v[−1] ◦ t− [−1] = 0

This proves one direction of (LC4’). The other direction is analogous, so we skip it.
(LT1) It’s obvious that the translation of a quasi-isomorphism is still a quasi-isomorphism.
(LT2) Suppose we have a diagram as below with distinguished rows.

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

s t

with s, t quasi-isomorphisms. We know that from (TR3) we can complete this to a morphism
of triangles with morphism u : Z → Z ′.

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

s t u

92



To verify (LT2), we need to prove that u is a quasi-isomorphism. Both rows being distin-
guished gives rise to long exact sequences on cohomology, and these long exact sequences
have induced morphisms from s, t, u making the following diagram commute.

· · · HnX HnY HnZ Hn+1X Hn+1Y · · ·

· · · HnX ′ HnY ′ HnZ ′ Hn+1X ′ Hn+1Y ′ · · ·

Hns Hnt Hnu Hn+1s Hn+1t

In the diagram above, the rows are exact, and the morhisms induced by s, t are isomorphism
because s, t are quasi-isomorphisms. So we can apply the 5-lemma, which says that Hnu is
an isomorphism. This works for every n ∈ Z, so u is a quasi-isomorphism.

Remark 5.5. To summarize, we have finished showing that the class S of quasi-isomorphism
in the homotopy category K(A) forms a localizing class compatible with triangulation. This
has several useful implications for the derived category D(A) := K(A)[S−1], such as

� D(A) is triangulated

� The localization functor Q : K(A)→ D(A) is exact and has the universal property of
theorem 4.77

� The localization functor Q : K(A) → D(A) has the universal property of proposition
4.78. In particular, the cohomology functor Hn : K(A) → A is cohomological, so
it factors through Q and through the derived category, which is to say, there are
cohomological functors Hn : D(A) → A which agree with Hn : K(A) → A on the
image of Q.

Definition 5.6. The derived category D(A) has all the same associated bounded subcate-
gories analogous to those in K(A). More precisely, we have categories

D∗(A) := K∗(A)[(S∗)−1]

for ∗ ∈ {+,−, b}, which are respectively bounded above, bounded below, and bounded full
subcategories.

For the next theorem, recall the functor

A → C(A) X 7→ · · · → 0→ X → 0→ · · ·

which takes an object to a complex concentrated in degree zero. This also inducesA → K(A)
and D : A → D(A). When the image is C(A), the functor is obviously fully faithful, but
when it lands in K(A), this is no longer true. But when we go further to D(A), we recover
this fully faithfulness.

Theorem 5.7. The functor

D : A → D(A) X 7→ · · · → 0→ X → 0→ · · ·

is fully faithful.
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Proof. We need to show that for objects M,N of A, the map induced by the functor D
on hom-sets is bijective. (These are additive categories, so this is a morphism of abelian
groups.)

HomA(M,N)→ HomD(A)(DM,DN)

We start with injectivity. Let φ, ψ : M → N be morphisms in A such that Dφ = Dψ as
morphisms DM → DN . By remark 5.5, the functor H0 : K(A)→ A induces H0 : D(A)→
A.

K(A) D(A)

A

Q

H0 H0

For any morphism φ : M → N , we have H0(Dφ) = φ, so φ = H0(Dφ) = H0(Dψ) = ψ, thus
D is injective on morphisms.

Now for surjectivity. Suppose φ : DM → DN is a morphism in D(A). Represent φ by a
left roof.

X

DM DN

∼
s f

where s is a quasi-isomorphism. So φ = Q(f)Q(s)−1, with s, f morphisms in K(A). Since
DM is concentrated in degree zero and s is a quasi-isomorphism, HnX = 0 for all n 6= 0.
Write the complex X as

X · · · → X−1
d−1

−−→ X0 d0−→ X1 → · · ·

and let Y be the complex

Y · · ·X−1 d−1

−−→ ker d0 → 0→ · · ·

Then we have a natural morphism r : Y → X depicted below which is a quasi-isomorphism,
where the morphism ker d0 → X0 is the natural map associated with the kernel.

Y · · · X−1 ker d0 0 · · ·

X · · · X−1 X0 X1 · · ·

r Id

d−1 d0

Since r is a quasi-isomorphism, it is invertible in D(A). Let s′ = sr and f ′ = fr. So the left
roof which we represented φ by is equivalent to the left roof

Y

DM DN

∼
s′=sr f ′=fr
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where Y is a complex satisfies Y n = 0 for n > 0. Now let R = H0X ∈ ob(A). We can
write s′ as a composition s′ = ut where t is a quasi-isomorphism and u is an isomorphism of
complexes.

Y · · · X−1 ker d0 0 · · ·

DR · · · 0 R 0 · · ·

DM · · · 0 M 0 · · ·

t

s′

d−1

u

Similarly, we can factor f ′ as f ′ = gt where t is a quasi-isomorphism.

Y · · · X−1 ker d0 0 · · ·

DR · · · 0 R 0 · · ·

DN · · · 0 N 0 · · ·

t

f ′

d−1

g

So the roof

Y

DM DN

∼
s′=ut f ′=gt

is equivalent to the roof

DR

DM DN

∼
u g

Finally, since u is an isomorphism of complexes, we have an equivalence of roofs

DR

DR DR

DM DN

∼
1 u

∼
u

g

gu−1

1

Putting everything together, our original map φ is represented by the roof

DR

DM DN

∼
1 gu−1

which is precisely D(gu−1). Thus φ = D(gu−1), so D is also surjective on morphisms.
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Corollary 5.8. Let A be an abelian category. If D(A) is abelian, then A is semisimple.

Proof. Suppose D(A) is abelian. Since it is also triangulated, it is semisimple. To show that
A is semisimple, we show that every epimorphism in A splits.

Let α : M → N be an epimorphism. Then α induces an epimorphism between complexes
concentrated in degree zero in K(A). Since the localization functor Q : K(A) → D(A) is
exact the image D(α) is then an epimorphism. Since D(A) is semisimple, D(α) splits, i.e.
there is a section β : DN → DM such that β ◦D(α) = IdDM .

Since A → D(A) is full, β̃ comes from a morphism in A. That is, there is a morphism

β̃ : N →M such that D(β̃) = β. Then

D(β̃ ◦ α) = D(β̃) ◦D(α) = β ◦D(α) = IdDM = D(IdM)

Since D is faithful, this implies β̃ ◦α = IdM , which is to say α splits. Hence A is semisimple.

Lemma 5.9. Let A be an abelian category, and let X, Y be objects in C(A). If there exists
n ∈ Z such that

Xp = 0, p ≥ n and Y p = 0, ∀p < n

then HomD(A)(X, Y ) = 0.

Remark 5.10. Before proving this, note that under the hypotheses, it is obvious that
HomC(A)(X, Y ) = 0 since any morphism fp : Xp → Y p has at least one of domain or
codomain being zero. Since HomK(A)(X, Y ) is a quotient of this, it is also immediately zero.
On the other hand, since D(A) is a localization of K(A), and morphisms in the localization
are constructed as paths or roofs, it’s not a priori impossible that HomD(A)(X, Y ) could have
some nonzero morphisms. Of course, the lemma says that it does not in this case.

Proof. Let φ : X → Y be a morphism in D(A), and represent φ by a left roof.

Z

X Y

∼
s f

where s is a quasi-isomorphism. We know that Hp(X) = 0 for p ≥ n, so s being a quasi-
isomorphism means Hp(Z) = 0 for p ≥ n as well. Let U be the following truncation of
Z.

· · · → Zn−2 dn−2

−−−→ ker dn−1 → 0→ · · ·

Then the natural map i : U → Z is a quasi-isomorphism, so the roof for φ is equivalent to

U

X Y

∼
si fi

But then we have a morphism fi : U → Y which is a morphism in K(A), and Up = 0 for
p ≥ n and Y p = 0 for p < n, so fi = 0. Hence φ = 0.
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Proposition 5.11. Let A be an abelian category. Let

0→ X
f−→ Y

g−→ Z → 0

be a short exact sequence in C(A). Then there exists a morphism h : Z → X[1] in D(A)
such that

X
f−→ Y

g−→ Z
h−→ X[1]

is a distinguished triangle in D(A). Moreoever, if the original sequence is all concentrated
in degree zero, then h is unique (in fact h = 0 in this scenario).

Proof. Let Cf be the cone of f , so Cf = X[1]⊕ Y . Set m : Cf → Z to be the composition

Cf
proj−−→ Y

g−→ Z

where proj is the projection map. We claim that

1. m is a morphism of complexes.

2. Let if : Y → Cf be the natural morphism. Then mif = g.

3. m is a quasi-isomorphism.

(1) Note that it is not immediate that m is a morphism of complexes, because Cf
proj−−→ Y is

not, in general, a morphism of complexes. To show that m is a morphism of complexes, we
need to verify that mn+dnCf

= dnZm
n. We use our matrix notational shortcut.

mn+1dnCf
=
(
0 gn+1

)(−dn+1
X 0

fn+1 dnY

)
=
(
gn+1fn+1 gn+1dnY

)
=
(
0 dnZg

n
)

= dnZm

The key step here is that exactness of the origianl sequence means that the left component
gn+1fn+1 vanishes.

(2) This is immediate from the definition of m.
(3) Consider the trivial commutative diagram of complexes

X X

X Y

Id

Id f

f

This induces a morphism between the cones of the horizontal maps, so we have w : CIdX →
Cf , which is given in degree n by

wn =

(
IdXn+1 0

0 fn

)
Since f is a monomorphism, so is w. For any n ∈ Z,

imwn = Xn+1 ⊕ im fn ∼= Xn+1 ⊕ ker gn = kermn
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so we have a short exact sequence of complexes

0→ CIdX
w−→ Cf

m−→ Z → 0

Since IdX is a quasi-isomorphism, CIdX is acyclic. So from looking at the associated long
exact sequence in cohomology associated to the above seqeuence of complexes, it follows that
m is a quasi-isomorphism.

This completes our discussion of the properties of m, so we can now complete the proof
of the proposition. Since m is a quasi-isomorphism, is it is an isomorphism in D(A). We
also have the projection pf : Cf → X[1] which is a morphism of complexes. Set h = pfm

−1 :
Z → X[1] in D(A). This fits into the commutative diagram

X Y Cf X[1]

X Y Z X[1]

f

Id

if

Id

pf

m Id

f g h

Since the top row is a distinguished triangle and the vertical arrows are isomorphisms in
D(A), the bottom is as well.

Finally, we tackle the uniqueness statement. Suppose that our short exact sequence
0 → X → Y → Z → 0 of complexes is concentrated in degree zero, which is to say, it
comes from a short exact sequence 0→ X0 → Y 0 → Z0 → 0 in A. We have our morphism
h : Z → X[1], but Z and X[1] don’t have any nonzero terms in the same degrees, so by
lemma 5.9 HomD(A)(Z,X[1]) = 0. Thus there is a unique morphism Z → X[1] (the zero
morphism), which must be h.

Remark 5.12. The morphism h from the previous proposition is not unique, in general. We
only know uniqueness in the somewhat restrictive situation mentioned in the proposition.

5.1 Truncation

Definition 5.13. Recall that if X is a chain complex and n ∈ Z, the truncations of X are
defined by

τ≤n(X)m =


Xm m < n

ker dm m = n

0 m > n

and

τ≥n(X)m =


0 m < n

coker dm−1 m = n

Xm m > n

We discussed previously how the truncation functors τ≤n, τ≥n : C(A) → C(A) behave well
with respect to chain homotopies, so they induce truncation functors τ≤n, τ≥n : K(A) →
K(A).

We would like these to also pass to the derived category, and this works out nicely. If
X

s−→ Y is a quasi-isomorphism, then the truncated versions τ≤n(s) and τ≥n(s) are also
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quasi-isomorphisms, so by the universal property we obtain truncation functors τ≤n, τ≥n :
D(A)→ D(A).

Remark 5.14. Let X be a chain complex in A. Define a complex Q by

Qm =


0 m < n

coim dm m = n

Xm m > n

where coim dm = coker ker dm is the coimage, and boundary maps in Q are induced by those
in X. Then we have a short exact sequence of complexes

0→ τ≤n(X)→ X → Q→ 0

We also have the following commutative diagram, which describes a quasi-isomorphism Q→
τ≥n+1(X).

Q · · · 0 coim dn Xn+1 Xn+2 · · ·

τ≥n+1(X) · · · 0 0 coker dn Xn+2 · · ·

∼= Id

From our short exact sequence of complexes above, using proposition 5.11 we obtain a
distinguished triangle

τ≤n(X)→ X → Q→ τ≤n(X)[1]

But as we said before, in D(A), Q ∼= τ≥n+1(X), so we can write this as

τ≤n(X)→ X → τ≥n+1(X)
h−→ τ≤n(X)[1]

But from lemma 5.9 we know that HomD(A)(τ≤n(X), τ≥n+1(X)[−1]) = 0, so the map h from
proposition 5.11 is unique (and is in fact zero).

The preceding remark serves as a proof for the following proposition.

Proposition 5.15. For X ∈ ob(C(A)) and n ∈ Z, there exists a unique morphism16

h : τ≥n+1(X)→ τ≤n(X)[1]

in D(A) such that the following is a distinguished triangle.

τ≤n(X)→ X → τ≥n+1(X)
h−→ τ≤n(X)[1]

Remark 5.16. My professor didn’t say anything about h being zero in the previous propo-
sition, so maybe I’ve made a mistake. It seems like a much less interesting result if h is just
zero.

16I’m pretty sure h just has to be the zero morphism, actually.
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Definition 5.17. Recall that for ∗ ∈ {+,−, b} we have the categories C∗(A) of bounded
below, bounded above, and bounded chain complexes respectively. To each is a corresponding
bounded homotopy category K∗(A). In K∗(A), we have a localizing class S∗ of quasi-
isomorphims, which is compatible with triangulation, so we have an associated bounded
derived category

D∗(A) = K∗(A)[(S∗)−1]

There are also “inclusion” functors

K+(A)→ K(A) K−(A)→ K(A)

which by the universal property of localization induce analogous functors

D+(A)→ D(A) D−(A)→ D(A)

Our next objective is to establish that these functors are fully faithful and injective (up to
isomorphism) on objects. First, we state a lemma without proof.

Lemma 5.18. Let C be an additive category. Let B be a full subcategory of C, and let S be
a localizing class in C. Assume that

1. SB = S ∩Mor(B) is a localizing class in B.

2. For any morphism N
s−→M in S with M ∈ ob(B), there exists a morphism P

n−→ N in
C with P ∈ ob(B) such that sn ∈ S.

Then the natural functor B[S−1B ]→ C[S−1] is fully faithful.

Proof. This isn’t terribly complicated, just work with left roofs.

Remark 5.19. The conclusion of the previous lemma also holds replacing condition (2) with
the “dual” condition

(2’) For any morphism M
s−→ N with s ∈ S and M ∈ ob(B), there exists a morphism

N
n−→ P in C with P ∈ ob(B) such that ns ∈ S.

Proposition 5.20. The inclusion functors D+(A)→ D(A), D−(A)→ D(A) are fully faith-
ful and injective on objects.

Proof. We’ll just do the argument for D−, the argument for D+ is analogous. We want to
apply lemma 5.18 in the situation C = K(A),B = K−(A). Then B[S−1B ] = K−(A)[(S+)−1] =
D−(A), so if the hypotheses of the lemma hold, then D−(A) → D(A) is fully faithful. We
already know that condition (1) holds in this situation, so it just remains to verify condition
(2).

Suppose N
s−→ M is a quasi-isomorphism with M ∈ ob(K−(A)). Then there exists

n ∈ Z such that Hp(M) = 0 for all p > n. Since s is a quasi-isomorphism, Hp(N) = 0
for p > n as well. Thus the natural morphism i : τ≤n(N) → N is a quasi-isomorphism. So
si : τ≤n(N)→M is a quasi-isomorphism. Since τ≤n(N) ∈ ob(K−(A)), this verifies property
(2).

Injectivity on objects is obvious. If X, Y are complexes in D−(A) which become isomor-
phic in D(A), that same isomorphism is a morphism between X, Y in D−(A).
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Remark 5.21. In light of the previous proposition, we view D+(A), D−(A) as full subcat-
egories of D(A). Also note that we have functors Db(A) → D−(A) and Db(A) → D+(A)
and by the same arguments these are fully faithful and injective on objects. In fact,
Db(A) = D+(A) ∩D−(A) just as in the chain complex or homotopy categories.

5.2 Injective resolutions

For most of this section, we assume that A is an abelian category with enough injectives.

Remark 5.22. Let X be an object of A, and take an injective resolution of X.

X → I0 → I1 → I2 → · · ·

We can think of this as a quasi-isomoprhism in D+(A).

· · · 0 A 0 0 · · ·

· · · 0 I0 I1 I2 · · ·

Theorem 5.25 below is a direct generalization of this.

Remark 5.23. Recall the general construction of pushouts in an abelian category. If we
have a diagram

A B

C

α

γ

define θ = (α,−γ) : A → B ⊕ C and D = coker θ = B tA C. Then there are natural maps
β : B → D, δ : C → D (associated with the coproduct B⊕C) making the following diagram
commute.

A B

C D

α

γ β

δ

If we assume A is a category of R-modules (using Freyd-Mitchell) then we have the following
useful property of pushout diagrams: given b ∈ B, c ∈ C such that δ(c) = β(b), there exists
a ∈ A such that b = α(a), c = γ(a).

Proposition 5.24. Let A be an abelian category17, and suppose B is a class of objects in A
containing the zero object, and such that every object of A admits a monomorphism into an
object of B. Then given X ∈ ob(C(A)) such that Xn = 0 for n < 0, there exist a complex Y
with Y n ∈ B for all n, Y n = 0 for n < 0, and a quasi-isomorphism X

s−→ Y .

17It doesn’t matter if A has enough injectives for this result.
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Proof. Using the Freyd-Mitchell embedding, we may assume A is a category of R-modules,
to simplify the proof. Write X as

0→ X0 d0X−→ X1 d1X−→ · · ·

Let s0 : X0 → Y 0 be a monomorphism with Y 0 ∈ B. Now take the pushout of s0, d0X .

X0 X1

Y 0 Y 0 tX0 X1

d0X

s0 α

u

Now let i1 : Y 0 tX0 X1 → Y 1 be a monomorphism with Y 1 ∈ B, and set d0Y = i1u and
s1 = i1α. Then we have a commutative diagram

X0 X1

Y 0 Y 1

d0X

s0 s1

d0Y

So s0 induces a morphism ker d0X → ker d0Y , which is an isomorphism between zero-th ho-
mology of the complexes 0→ X0 → X1 and 0→ Y 0 → Y 1. So at this point we have

0 X0 X1 X2 · · ·

0 Y 0 Y 1

s0

d0X

s1

d1X

d0Y

with Y i ∈ B and s0 inducing an isomorphism on homology. Now we argue inductively.
Suppose we have constructed Y n and sn fitting into a diagram below, with si inducing
isomorphisms on homology for i < n.

0 X0 · · · Xn · · ·

0 Y 0 · · · Y n

s0 sn

We need to construct Y n+1, sn+1, such that the diagram commutes, and sn is an isomorphism
on homology. First, form the pushout coker dn−1Y tXn Xn+1, then use the hypothesis of the
proposition to obtain a monomorphism from this pushout to an object Y n+1 ∈ B. We
illustrate this in the following diagram.

Xn Xn+1

Y n coker dn−1Y coker dn−1Y tXn Xn+1 Y n+1

dnX

sn α β

δ
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Now define dnY : Y n → Y n+1 as the composition of the three arrows along the bottom row of
the above diagram. Since the composition Y n−1 → Y n → coker dn−1Y is zero, dnY d

n−1
Y = 0, so

this inductive definition makes Y into a complex. We also need to verify that sn induces an
isomorphism Hn(X)→ Hn(Y ).

First, we prove that the induced map on Hn is surjective. Let y ∈ ker δ ⊂ coker dn−1Y .
So both y and 0 in Xn+1 are mapped to 0 in the pushout, so there exists x ∈ Xn such that
dnX(x) = 0 and α(x) = y. Since α is the induced map on Hn, this shows Hn(s) is surjectivity.

Finally, we verify that the induced map on Hn is injective. Suppose x ∈ Xn such that
α(x) = 0. Then sn(x) = dn−1Y (y) for some y ∈ Y n−1. Then consider the pushout at the
previous step n− 1.

Xn−1 Xn

Y n−1 coker dn−2Y coker dn−2Y tXn−1 Xn Y n

dn−1
X

sn−1

α′ β′

δ′

We have x ∈ Xn, so β′(x) ∈ im δ′, which says that β′(x) = δ′(z) for some z ∈ coker dn−2Y .
Then there exists x̃ ∈ Xn−1 such that dn−1X (x̃) = 0. But then x = 0 in Hn(X). This proves
injectivity.

Theorem 5.25. Let A be an abelian category with enough injectives. Given a complex
X ∈ ob(C+(A)), let i ∈ Z such that Xn = 0 for n < i. Then there exists a complex I of
injective objects such that In = 0 for n < i and a quasi-isomorphism X

s−→ I.

Proof. Immediate from previous proposition, taking B to be the class of injective objects
and translating X so that i = 0.

Definition 5.26. For a fixed abelian category A, let I be the full subcategory of A of
injective objects. Since finite coproducts of injective objects are injective, this is is an
additive subcategory.

We can then consider the full additive subcategory K+(I) of K+(A). This category
K+(I) is invariant under translation, and also for any morphism in K+(I), the cone of that
morphism lies in K+(I).

Definition 5.27. Let C be a triangulated category with translation functor TC. A fully addi-
tive subcategory D of C is triangulated if D is closed under isomorphisms and translation,
and for any distinguished triangle X → Y → Z → X[1] with X, Y ∈ ob(D), we also have
Z ∈ ob(D).

In the following lemmas/propositions, A is an abelian category with enough injectives and
I is the subcategory of injectives.

Lemma 5.28. Let X ∈ ob(K+(A)), I ∈ ob(K+(I)). If X is acyclic, then any morphism

X
f−→ I is nullhomotopic.

Proof. Since X, I are both bounded below, we may apply some number of translations to
assume that Xp = Ip = 0 for p < 0. We need morphisms hp : Xp → Ip−1 for p > 0 such that

fp = hp+1dpX + dp−1I hp (5.1)

103



We construct the morphisms hp inductively, starting with h1. Since X is acyclic, d0X is a
monomorphism, and since I0 is injective, there exists a morphism h1 : X1 → I0 such that
f 0 = h1d0X .

0 X0 X1

I0

f0

d0X

h1

Sinced d−1I = 0, equation 5.1 is true for p = 0. Now assume we have h1, h2, . . . , hn such that
equation 5.1 holds for p = 1, . . . , n− 1. We construct hn+1 as follows. Let

φ := fn − dn−1I hn : Xn → In

Then

φdn−1X = fndn−1X − dn−1I hndn−1X

= dn−1I fn−1 − dn−1I hndn−1X

= dn−1I

(
fn−1 − hndn−1X

)
= dn−1I

(
dn−2I hn−1

)
= 0

Hence φ factors through coker dn−1X . SinceX is acyclic, coker dn−1X = coim dnX = coker(ker dnX →
Xn). Also, dnX induces a monomorphism coim dnX → Xn+1.

Xn coim dnX Xn+1

In
φ

φ

Since In is injective, there exists hn+1 : Xn+1 → In such that φ = hn+1dnX .

0 Xn Xn+1

In

φ

dnX

hn+1

So we get hn+1dnX = φ = fn − dn−1I hn which rearranges to get equation 5.1 with p = n.

Proposition 5.29. Let A be an abelian category and X ∈ ob(K(+(A)), I ∈ ob(K+(I)). For
any quasi-isomorphism s : I → X, there exists a morphism t : X → I such that ts = IdX in
K+(A).

Proof. Let s : I → X be a quasi-isomorphism with I,X as above. Extend s to a distinguished
triangle involving the cone of s.

I
s−→ X

i−→ Cs
p−→ I[1]
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Since s is a quasi-isomorphism, Cs is acyclic. Then by the previous lemma applied to p, p is
nullhomotopic, so there is a nullhomotopy giving us maps

hn : Cn
s = In+1 ⊕Xn → I[1]n−1 = In

which we can write as a matrix
hn =

(
kn+1 tn

)
for some morphisms kn+1 : In+1 → In and tn : Xn → In. The fact that this is a nullhomotopy
means that

pn = dn−1I[1] h
n + hn+1dnCs

so (
IdIn+1 0

)
=
(
−dnI

) (
kn+1 tn

)
+
(
kn+2 tn+1

)(−dn+1
I 0

sn+1 dnX

)
=
(
−dnI kn+1 −dnI tn

)
+
(
−kn+2dn+1

I + tn+1sn+1 tn+1dnX
)

hence
Idn+1
I = −dnI kn+1 − kn+2dn+1

I + tn+1sn+1

and
dnI t

n = tn+1dnX

The second equation says that t is a morphism of complexes Xn → In, and the first equation
says that tn+1sn+1 is homotopic to IdIn+1 , which is what we needed to prove.

Proposition 5.30. Let I, J ∈ ob(K+(I)). Then any quasi-isomorphism s : I → J is an
isomorphism in K+(I).

Proof. By the previous proposition, there exists a morphism t : I → I such that ts = IdI in
K+(I). So taking homology

Hp(t)Hp(s) = IdHp(I)

Since s is a quasi-isomorphism, Hp(s) is an isomorphism, so the previous equation implies
that Hp(t) is also an isomorphism. Thus t is a quasi-isomorphism. Then using the previous
proposition again, there exists u : I → J such that ut = IdJ in K+(I), hence u = uts = s
implies s is an isomorphism in K+(I).

Theorem 5.31. Let A be an abelian category with enough injectives. The functor

K+(I)→ D+(A)

18 is an equivalence of categories.

Proof. Theorem 5.25 says that this functor is essentially surjective, so we just need to show
that it is fully faithful.

18This is the inclusion K+(I)→ K+(A) followed by Q : K+(A)→ D+(A).
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Let S+ be the class of quasi-isomorphisms in K+(A) and S+
I = S+∩Mor(K+(I)) be the

class of quasi-isomorphisms in K+(I). By the previous proposition, everything in S+
I is an

isomorphism in K+(I). So S+
I is a localizing class compatible with triangulation, and

K+(I)[(S+
I )−1] = K+(I)

since we’re only localizing by isomorphisms. Also, if I
s−→ X is in K+(A), there exists X

t−→ I
such that ts = IdI where t is a morphism in K+(A). This implies ts ∈ S+. Hence lemma
5.18 applies and shows that

K+(I) = K+(I)[(S+
I )−1]→ K+(A)[(S+)−1] = D+(A)

is fully faithful.

Proposition 5.32. Let I ∈ ob(K+(I)) and X ∈ ob(K(A)). The localization functor Q :
K(A)→ D(A) gives a bijection

κ : HomK(A)(X, I)→ HomD(A)(X, I)

Proof. The map κ takes a morphism in the homotopy category to the “same” morphism in

D(A). To be precise, κ takes a morphism X
f−→ I to the equivalence class of the left roof

X

X I

fIdX

First we prove that κ is injective. Since κ is a morphism of abelian groups, it suffices to

show that κ has trivial kernel. Suppose X
f−→ I such that κ(f) = 0. Then there exists

a quasi-isomorphism I
s−→ Y such that sf = 0. We may assume Y ∈ ob(K+(A)). From

previous results, there exists Y
t−→ I such that ts = IdI in K+(A). Then tsf = f = 0, so κ

has trivial kernel, and is injective.

Now we prove κ is surjective. Let X
φ−→ I be a morphism in D(A). Represent φ as a

right roof.

Y

X I

f

∼
s

with s a quasi-isomorphism. Then there exists Y
t−→ I such that ts = IdI and the argument

constructing t showed that t is a quasi-isomorphism. Hence φ is represented by the equivalent
roof

I

X I

tf

∼
ts=Id

hence φ = κ(tf).
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5.3 Extensions and Ext groups

In this section we discuss a view of Ext groups from the perspective of the derived category.
As in the previous section, A is an abelian category with enough injectives, and I is the full
additive subcategory of injective objects.

Definition 5.33. Let A be as above, with objects X, Y . We give the classical definition of
ExtnA(X, Y ). Choose an injective resolution of Y .

0→ Y → I0 → I1 → · · ·

and form the complex

0→ HomA(X, I0)→ HomA(X, I1)→ · · ·

We define ExtnA(X, Y ) to be the nth cohomology group of this latter complex.

Remark 5.34. In the classical approach, one has to then show that the choice of injective
resolution for Y in the previous construction does not change the homology of the second
complex, but we will omit this discussion and focus on giving an equivalent description in
terms of the derived category.

Let X, Y be as above, with the chosen injective resolution of Y . Set X[0] to be the complex
with X in degree zero, and analogously Y [0] is the complex with Y in degree zero.

X[0] = · · · → 0→ X → 0→ · · ·
Y [0] = · · · → 0→ Y → 0→ · · ·

Let I be the following complex in K+(I).

I = · · · → 0→ I0 → I1 → · · ·

The map Y → I0 gives a quasi-isomorphism of complexes Y [0]→ I.

· · · 0 Y 0 · · ·

· · · 0 I0 I1 · · ·

which is then an isomorphism in D+(A). Hence

HomD(A)(X[0], Y [n]) ∼= HomD(A)(X[0], I[n])

where Y [n] is the complex Y [0] shifted n times, so it has Y in degree −n and zeros elsewhere.
Then from proposition 5.32 we have

HomD(A)(X[0], I[n]) ∼= HomK(A)(X[0], I[n])

Theorem 5.35. Let A be an abelian category with enough injectives. For any X, Y ∈ ob(A),

ExtnA(X, Y ) = HomD(A)(X[0], Y [n])
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Proof. HomK(A)(X[0], I[n]) consists of homotopy class of morphisms of complexes

· · · 0 X 0 · · ·

· · · In−1 In In+1 · · ·

Note that a morphism X
f−→ In in A gives rise to such a morphism of complexes as above if

and only if the composition X
f0−→ In

dnI−→ In+1 is zero. So

HomC(A)(X[0], I[n]) = ker
(

HomA(X, In)→ HomA(X, In+1
)

the map on the right being given by composition with dnI . Also, X[0]
f−→ I[n] is nullhomotopic

if and only if there exists a morphism X
h−→ In−1 in A such that f 0 = dn−1I h, which is

to say, if and only if the composition X
h−→ In−1

dn−1
I−−−→ In is f 0. Thus the subgroup of

HomC(A)(X[0], I[n]) of nullhomotopic moprphisms is the image of

HomA(X, In−1)→ HomA(X, In) h 7→ dn−1I h

Thus HomK(A)(X[0], I[n]) is precisely this quotient, which is coincides with our earlier defi-
nition of ExtnA(X, Y ).

HomK(A)(X[0], I[n]) =
ker
(

HomA(X, In)→ HomA(X, In+1)
)

im
(

HomA(X, In−1)→ HomA(X, In)
)

Remark 5.36. The same argument as above (or just applying translation) gives a more
general statement:

ExtnA(X, Y ) = HomD(A)(X[m], Y [n+m])

for any m ∈ Z.

Definition 5.37. Let A,B ∈ ob(A). Define an abelian group ExtA(A,B) whose elements
are equivalence classes of extensions

0→ B → E → A→ 0

where two extensions are equivalent if there is an isomorphism of short exact sequences as
below.

0 B E A 0

0 B E ′ A 0

1 ∼= 1

Addition in ExtA(A,B) is by Baer sum, which is essentially taking the pullback of E,E ′,
but we omit the details of this at the moment.
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Definition 5.38. An extension 0→ B → E → A→ 0 can be viewed as a quasi-isomorphism

0 B E 0

0 0 A 0

To be clear, we’re putting the A and E in degree zero, and B in degree −1. We denote A[0]
as before the complex with A in degree zero, B[1] as the complex with just B in degree −1,
and let E(A,B) be the complex

0→ B → E → 0

with degrees as designated above. Let E(A,B)
s−→ A[0] be the quasi-isomorphism depicted

above, and let E(A,B)
f−→ B[1] be the identity on the B component and zero elsewhere.

Then we can take the equivalence class of the left roof

E(A,B)

A[0] B[1]

∼
s f

and obtain a morphism Q(f)Q(s)−1 ∈ HomD(A)(A[0], B[1]) = Ext1A(A,B). In order to
have this give rise to a map ExtA(A,B) → Ext1A(A,B), we need to show that equivalent
extensions give rise to the same morphism in the derived category. If we have an equivalence
of extensions given by an isomorphism ε : E → E ′, then it gives rise to an equivalence of
roofs

E(A,B)

E(A,B) E ′(A,B)

A[0] B[1]

Id (IdB ,ε)

s

f

f ′

s′

So this does give rise to a well defined map

Φ : ExtA(A,B)→ Ext1A(A,B) = HomD(A)(A[0], B[1])

Theorem 5.39. The map Φ defined above is an isomorphism of abelian groups.

Proof. We omit everything except a sketch of surjectivity, since that’s the most interesting
part. Given φ ∈ HomD(A)(A[0], B[1]), represent it by a left roof

L

A[0] B[1]

∼
s f
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We can then replace L by its truncation τ≤0(L) and assume Lp = 0 for p > 0, since L is
quasi-isomorphic to A. Also, H0(L) = A, and H i(L) = 0 for i 6= 0. Then we have a diagram

· · · L−2 L−1 L0 A 0 · · ·

· · · 0 B 0 0 0 · · ·

f−1

with the top row exact. Let E(φ) = coker(L−1 → L0⊕B) = coker(d−1L , f−1). You can check
that this gives an extension 0→ B → E(φ)→ A→ 0 which satisfies Φ(E(φ)) = φ.

5.4 Derived functors

In this section we discuss the conditions needed to have a functor F : A → B between abelian
categories induce a functor on the derived categories D∗(A) → D∗(B). First, we start out
only needing the assumption that A,B are additive, and see that F always induces, rather
naively, a functor on the homotopy categories.

Definition 5.40. Let A,B be additive categories, and F : A → B an additive functor.
Applying F term-by-term gives an additive functor C(F ) : C(A) → C(B) on the chain
complex categories. This functor C(F ) takes homotopic chain maps in C(A) to homotopic
chain maps in C(B), so it induces K(F ) : K(A)→ K(B).

On objects, K(F ) just applies F term-by-term, and on morphisms, K(F ) applies F
term-by-term to a morphism fn : Xn → Y n, and this respects homotopy classes by the
previous remark. Similarly, if we take a bounded version of the homotopy categories we get
K(F ) : K∗(A)→ K∗(B), where ∗ can be +,−, b.

Remark 5.41. The functor K(F ) above literally commutes with the translation functors
on K(A), K(B), not just commute up to natural isomorphism.

K(F ) ◦ TK(A) = TK(B) ◦K(F )

Lemma 5.42. The functor C(F ) preserves cones of morphisms. That is, if X
f−→ Y is a

morphism of complexes in C∗(A) with cone Cf , then C(F ) applied to the cone Cf is the cone
of C(F )(f).

C(F )(Cf ) = CC(F )(f)

Proof. Since F is additive, it commutes with finite biproducts. So for p ∈ Z, the pth term
of the cone CC(F )(f) is

Cp
C(F )(f) = F (X)p+1 ⊕ F (Y )p ∼= F (Xp+1 ⊕ Y p) = C(F )(Cp

f )

Thus the pth object term of the cone CC(F )(f) is isomorphic to the pth term of the image of
the cone Cf . Similarly, the pth boundary morphisms agree by the following calculation.

dpC(F )(f) =

(
−dp+1

C(F )(X) 0

C(F )(f)p+1 dpC(F )(Y )

)
=

(
−F (dp+1

X ) 0
F (fp+1) F (dpY )

)
= F (dpCf

)
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Corollary 5.43. K(F ) takes standard distinguished triangles in K∗(A) (those given by
cones) to distinguished triangles in K∗(B). Thus K(F ) takes all distinguished triangles in
K∗(A) to distinguished triangles in K∗(B).

Corollary 5.44. K(F ) : K∗(A)→ K∗(B) is exact.

Proof. We already noted it commutes with translation, and the previous corollary says that
it preserves distinguished triangles.

To summarize the previous discussion:

Proposition 5.45. Let F : A → B be an additive functor between additive categories.
Applying F term-by-term gives an exact functor of triangulated categories K(F ) : K∗(A)→
K∗(B).

Now we want to see if we can pass to the derived category. Assume A,B are abelian. Let
QA : K∗(A)→ D∗(A) and QB : K∗(B)→ D∗(B) be the respective localization functors. We
would like to have a functor D∗(A)→ D∗(B) making the following diagram commute.

K∗(A) K∗(B)

D∗(A) D∗(B)

K(F )

QA QB

A natural strategy would be to use the universal property given by (5) in proposition 4.50
to obtain this functor. However, to apply this universal property, we would need to know
that K(F ) takes quasi-isomorphisms in K∗(A) to quasi-isomorphisms in K∗(B), which is
not true, in general.19

As a first illustration of how this might happen, we can say that at least in a somewhat
trivial case, this happens, which is when F is exact. Of course, if F is exact, then there isn’t
really much homology going to begin with, so this is not the most interesting case. Despite
this, we record the following fact.

Proposition 5.46. Let F : A → B be an exact functor between abelian categories. Then for
any quasi-isomorphism X

s−→ Y in K∗(A), K(F )(s) is a quasi-isomorphism in K∗(B).

Proof. Recall that s is a quasi-isomorphism if and only if the cone Cs is acyclic. By lemma
5.42, CC(F )(s) = C(F )(Cs). Since s is a quasi-isomorphism, Cs is acyclic. Since F is exact, it
takes the acyclic complex Cs to an acyclic complex C(F )(Cs). Then CC(F )(s) is also acyclic,
so C(F )(s) is a quasi-isomorphism.

Corollary 5.47. Let F : A → B be an exact functor between abelian categories. Then
there exists a unique exact functor D(F ) : D∗(A)→ D∗(B) such that the following diagram
commutes.

19I don’t know a specific counterexample, unfortunately. Probably the place to look for a counterexample
is just to take F : A → B to be some functor which is neither left nor right exact.
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K∗(A) K∗(B)

D∗(A) D∗(B)

K(F )

QA QB

Proof. By the previous proposition, K(F ) takes quasi-isomorphisms in K∗(A) to quasi-
isomorphisms in K∗(B). Then we can apply the universal property 4.50 to the functor
QB ◦ K(F ) : K(A) → D(B) to obtain a unique additive functor D(F ) : D∗(A) → D∗(B)
making the diagram commute.

Next our goal is to obtain a functor on the derived categories under a weaker assumption
than exactness of F , since this is a very strict requirement. For the moment, we conduct the
discussion in a slightly more general setting of arbitrary triangulated categories rather than
the homotopy category of an abelian category.

Remark 5.48. Let C,D be triangulated categories, F : C → D be an exact functor com-
patible with triangulation, and S a localizing class in C compatible with triangulation. If
F (s) is an isomorphism for every s ∈ S, then the universal property just applied above gives
a unique exact functor F : C[S−1] → D such that F = FQ, where Q : C → C[S−1] is the
localization functor.

Definition 5.49. Let C,D be triangulated categories, F : C → D be an exact functor, and
S a localizing class in C compatible with triangulation. A right derived functor of F is a
pair (RF, εF ) where RF : C[S−1]→ D is an exact functor, and εF : F → RF ◦Q is a graded
natural transformation, and (RF, εF ) satisfy the following universal property:

Given an exact functor G : C[S−1] → D and a graded natural transformation εG : F →
G ◦ Q, there exists a unique graded natural transformation η : RF → G such that the
following diagram commutes.

F

RF ◦Q G ◦Q

εF εG

η′

where η′ is the natural transformation given by

η′X = ηQX : RF ◦Q(X)→ G ◦Q(X)

for an object X ∈ ob(C).

Remark 5.50. To keep everything in the previous definition straight, we include the fol-
lowing table.
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Variable Type of object
C,D Category
F,RF ◦Q,G ◦Q Functor C → D
Q Functor C → C[S−1]
RF,G Functor C[S−1]→ D
εF Natural transformation F → RF ◦Q
εG Natural transformation F → G ◦Q
η Natural transformation RF → G
η′ Natural transformation RF ◦Q→ G ◦Q

In particular, the distinction between η and η′ is somewhat subtle. The fact that η is a
natural transformation RF → G means that for every object Y ∈ ob(C[S−1]), there is a
morphism ηY ∈ HomD(RFY,GY ), subject to a commutativity condition in D.

Then, η′ being a natural transformation RF ◦ Q → G ◦ Q means that for every object
X ∈ ob(C), there is a morphism η′Y ∈ HomD(RF ◦ Q(X), G ◦ Q(X)). By definition of η′,
for Y = Q(X), these are the same morphism. The fact that ηY is defined for objects Y in
C[S−1] which are not of the form Q(X) for an object X of C doesn’t matter for what’s going
on in this definition.

Remark 5.51. As usual in category theory, one can reverse arrows and obtain another sensi-
ble definition. In this case, one defines left derived functors (LF, εF ) in this way. Alternately,
one can just talk about right derived functors in the opposite category.

Remark 5.52. Because of the universal property, a right or left derived functor is unique
up to isomorphism, if it exists. In this case, “unique up to isomorphism” means that the
functor RF is unique up to natural isomorphism.

Remark 5.53. If F (s) is an isomorphism for all s ∈ S, the both the right derived functor
RF and left derived functor LF coincide with the functor F : C[S−1]→ D of remark 5.48.

As we will see, it turns out that we can construct RF assuming something weaker than that
F (s) is an isomorphism for every s ∈ S. Instead, we’ll only have to assume that F (s) is an
isomorphism for every s in some subclass S ′.

Definition 5.54. Let F : C → D be an exact functor between triangulated categories, and
let S be a localizing class in C compatible with triangulation. A full triangulated subcategory
E ⊂ C is right adapted to F if

(RA1) SE = S ∩Mor(E) is a localizing class in E .

(RA2) For any X ∈ ob(C), there exists M ∈ ob(E) and a morphism X
s−→M with s ∈ S.

(RA3) For any s ∈ SE , F (s) is an isomorphism in D.

Theorem 5.55. Let F : C → D be an exact functor between triangulated categories and S
a localizing class in C compatible with triangulation. If there exists a full subcategory E of C
right adapted to F , then the right derived functor (RF, εF ) exists.
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Proof. We sketch the construction, and leave out the long tedious verifications. By (RA1),
SE is a localizing class compatible with triangulation so we can consider the localization
E [S−1E ]. Then using (RA2) and considerations similar to lemma 5.18, the natural functor

Ψ : E [S−1E ]→ C[S−1]

is fully faithful. Since this functor is the identity on objects, it allows us to think of E [S−1C ]
as a fully subcategory of C[S−1]. (RA2) also implies that Ψ is essentially surjective, so it is
an equivalence of categories. Let

Φ : C[S−1]→ E [S−1E ]

be a pseudo-inverse for Ψ, and in particular choose Φ so that Φ◦Ψ is the identity on IdE[S−1
E ]

(this is mostly a notational convenience). By (RA3), F (s) is an isomorphism for s ∈ SE ,
so the universal property in proposition 4.50 applies to give a functor F : C[S−1E ]→ D such
that F ◦QE = F |E .

D D

E E [S−1E ]

F

QE

F

Set RF = F ◦ Φ, which is a functor C[S−1] → D. Next we sketch the construction of
the graded natural transformation εF : F → RF ◦ QC. Because Ψ,Φ are pseudo-inverse
equivalences, there is a natural isomorphism

β : IdC[S−1] → Ψ ◦ Φ

which means that for each X ∈ ob(C[S−1]), there is an isomorphism βX : X → ΨΦX in
C[S−1]. Objects of C[S−1] are just objects of C, and Ψ is the identity on objects, so we can
think of this as an isomorphism (still in C[S−1]) β : X : X → ΦX. Represent βX by a right
roof.

K

X ΦX

f
∼

s

with K ∈ ob(C) and s ∈ S. By (RA2), there exists a moprhism K
u−→ M with u ∈ S,

M ∈ ob(E), so the roof above is equivalent to

M

X ΦX

uf
∼

us

So we may as well just assume that K ∈ ob(E). Then since ΦX and M are in ob(E), s ∈ SE .
So F (s) is an isomorphism in D, and we can consider F (s)−1. Define

ρX := F (s)−1 ◦ F (f) : FX → FΦX = (RF ◦Q)(X)

Then one checks the following:
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1. ρX is independent of the choice of roof representing βX

2. The collection ρX defines a natural transformation ρ = εF : F → RF ◦Q

3. εF is a graded natural transformation

4. εF satisfies the universal property of the theorem

We omit these details, since they are somewhat lengthy and involved.

Now that we have a general statement in the abstract setting of triangulated categories, we
specialize toward looking at right derived functors for the homotopy and derived categories
of an abelian category.

Definition 5.56. Let F : A → B be an additive functor between abelian categories. By
a right derived functor of F we mean a right derived functor in the previous sense of
QB ◦K(F ).

K∗(A) K∗(B)

D∗(A) D∗(B)

QA

K(F )

QB

That is, a right derived functor of F is a pair (RF, εF ) where RF : D∗(A) → D∗(B) is
a functor and εF : QB ◦ K(F ) → RF ◦ QA is a graded natural transformation satisfying
the universal property: given an exact functor G : D∗(A) → D∗(B) and a graded natural
transformation εG : QB◦K(F )→ G◦QA there exists a unique graded natural transformation
η : RF → G such that the following diagram commutes.

QB ◦K(F )

RF ◦QA G ◦QA

εF εG

η′

Remark 5.57. If R ⊂ K∗(A) is a full triangulated subcategory and S∗ ⊂ K∗(A) is the
usual localizing class of quasi-isomorphisms, then S∗R := S∗ ∩Mor(R) is a localizaing class
compatible with triangulation. In other words, when speaking of subcategories of K∗(A)
adapted to functors, we can omit (RA1).

Definition 5.58. F : A → B be an additive functor between abelian categories. A full
triangulated subcategory R ⊂ K∗(A) is right adapted to F if

(RA2) For any X ∈ ob(K∗(A)), there exists M ∈ ob(R) and a quasi-isomorphism X
s−→M .

(RA3’) For any acyclic complex M ∈ ob(K∗(R)), the complex K(F )(M) is acyclic in K∗(B).

Using the fact that a morphism is a quasi-isomorphism if and only if the cone is acyclic,
(RA3’) implies (RA3), though note that the converse may not be true, so (RA3) and (RA3’)
are not necessarily equivalent.
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This gives us a version of theorem 5.55 focused more on derived categories.

Theorem 5.59. Let F : A → B be an additive functor between abelian categories. Assume
there exists a full triangulated subcategory R ⊂ K∗(A) right adapted to F . Then there exists
a right derived functor (RF, εF ).

Proof. Immediate consequence of theorem 5.55 and definition 5.58.

We’d like to rephrase this slightly so that the conditions have less focus on the homotopy
category and more on the original category A, since such a condition will be easier to verify
in practice. So we once again retool our definition of right adapted. We can’t entirely get
away from the homotopy category, unfortunately.

Definition 5.60. Let F : A → B be an additive functor between abelian categories. A fully
subcategory R ⊂ A is right adapted to F if

(A1) R is an additive subcategory of A, meaning 0 ∈ R and R is closed under finite
products/coproducts.

(A2) Every object in A is a subobject of an object of R. That is, for every M ∈ ob(A),
there exists a monomorphism M → R with R ∈ ob(R).

(A3) If R ∈ ob(K+(R)) is acyclic, then K(F )(R) is acyclic in K+(B).

Remark 5.61. In the above definition, if R
f−→ T is a morphism in K+(R), since R is

closed under coproducts the cone Cf also lies in K+(R). Thus K+(R) is a full triangulated
subcategory of K+(A).

Remark 5.62. In the above definition, (A2) implies that for any complex X ∈ ob(K+(A)),
there exists a quasi-isomorphism X

s−→ R for some R ∈ ob(K+(R)).

Now we can rephrase theorem 5.59 as

Theorem 5.63. Let F : A → B be an additive functor between abelian categories and
assume there is a subcategory R ⊂ A which is right adapted to F . Then there exists a right
derived functor RF : D+(A)→ D+(B).

Now we specialize even further, to the most common adapted subcategory, that of injective
objects.

Lemma 5.64. Let A be an abelian category and let I be the full subcategory of injective
objects.

1. I satisfies (A3).

2. If A has enough injectives, then for any additive functor F : A → B with B abelian, I
is right adapted to I.

Proof. (1) Let I ∈ ob(K+(I)) be acyclic. By lemma 5.28, the identity morphism I → I is
nullhomotopic. So I ∼= 0 in K+(A). So K(F )(I) ∼= 0 in K+(B), so K(F )(I) is acyclic.

(2) I satisfies (A1), and (A3) by part (1). Condition (A2) is equivalent to the fact that
A has enough injectives.
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Theorem 5.65. Let A be an abelian category with enough injectives, and F : A → B be an
addtive functor to an abelian category B. Then F has a right derived functor RF : D+(A)→
D+(B).

Proof. Immediate from theorem 5.59 and the previous lemma.

Remark 5.66. We summarize and describe the previous theorem more concretely. Let A
be an abelian category with enough injectives, and let I be the full subcategory of injective
objects. Recall that we have an equivalence of categories

K+(I)→ D+(A)

which is the obvious functor, just the inclusion into K+(A) followed by the localization
functor. Let F : A → B be an additive functor. Tracing back to the construction of the
right derived functor in theorem 5.55, we can describe the constructed functor in theorem
5.65 as follows: it is the composition

D+(A)→ K+(I)
K(F )−−−→ K+(B)

QB−−→ D+(B)

where the first arrow is a pseudo-inverse for the equivalence of categories mentioned above.
Next, we want to relate our description of right derived functors to the classical construction
of right derived functors using injective resolutions.

Definition 5.67. Let F : A → B be an additive functor between abelian categories, where
A has enough injectives. Let RF : D+(A)→ D+(B) be the right derived functor of theorem
5.65. Recall the functor

DA : A → D+(A) X 7→ · · · → 0→ X → 0→ · · ·

Let TD+(B) be the translation functor on D+(B), and Hn : D+(A)→ A be the cohomology
functor. For n ∈ Z, define

RnF : A → B RnF = Hn ◦RF ◦DA = H0 ◦ T nD+(B) ◦RF ◦DA

Remark 5.68. We’ll show in a minute that this functor RnF coincides with the classical
right derived functors of F in the case where F is left exact. Before we get to the proof, a
few notes of setup. Recall that by construction of RF , we have a natural transformation

εF : QB ◦K(F )→ RF ◦QA

The functors QB ◦K(F ) and RF ◦QA are functors K(A)→ D+(B). Let M ∈ ob(A). Then
consider KAM ∈ ob(K(A)), which is just M in degree zero. The εF gives a morphism in
D+(B).

εF,KAM :
(
QB ◦K(F )

)(
KAM

)
→
(
RF ◦QA

)(
KAM

)
We can describe the source and target of this in simpler terms. Since K(F ) just applies F
term-by-term to complexes, (

QB ◦K(F )
)(
KAM

)
= DB(FM)

117



and (
RF ◦QA

)(
KAM

)
= RF (DAM)

So we can think of εF,KAM as a morphism

εF,KAM : DB(FM)→ RF (DAM)

Then if we apply the H0 cohomology functor, we obtain

H0(εF,KAM : H0(DB(FM))→ H0(RF (DAM))

Since DB(FM) is concentrated in degree zero, the source here is just FM . And the target
is, by definition, R0F (M). So we have

H0(εF,KAM : FM → R0F (M)

Since εF is a natural transformation, it makes an appropriate diagram commute. Applying
H0 to that diagram shows that H0(εF ) is a natural transformation

H0(εF ) : F → R0F

which is given on an object M ∈ ob(A) by H0(εF,KAM above.

With the preceeding remark out of the way, we can describe properties of our constructed
functors RnF , in particular that they coincide with the classical right derived functors when
F is left exact.

Proposition 5.69. Let F : A → B be an additive functor between abelian categories, with
A having enough injectives.

(1) RnF = 0 for n < 0.

(2) R0F is left exact.

(3) The natural transformation
H0(εF ) : F → R0F

is a natural isomorphism if and only if F is left exact.

(4) For any short exact sequence

0→ L
f−→M

g−→ N → 0

in A, there is a long exact sequence

0→ R0F (L)
R0F (f)−−−−→ R0F (M)

R0F (g)−−−−→ R0F (N)→ R1F (L)
R1F (f)−−−−→ R1F (M)→ · · ·

(5) Let M ∈ ob(A), and let 0 → M → I0 → I1 → · · · be any injective resolution of M .
Let I be the complex · · · → 0→ I0 → I1 → · · · . Then for all n ≥ 0,

RnF (M) ∼= Hn
(
C(F )(I)

)
118



Before the proof, we note that combining (2), (3), and (5) gives the assertion made previously,
that RnF as defined here coincides with the classical description provided that F is left exact.

Proof. We start with (4). Let 0 → L → M → N → 0 be a short exact sequence in A.
Applying DA, we get a distinguished triangle in D+(A).

DA(L)→ DA(M)→ DA(N)→ DA(L)[1]

Since RF is exact, applying it gives a distinguished triangle in D+(B).

RF ◦DA(L)→ RF ◦DA(M)→ RF ◦DA(N)→ RF ◦DA(L)[1]

Since H0 is a cohomological functor, it takes distinguished triangles to long exact sequences.
So we obtain a long exact sequence (in B)

· · · → Hn◦RF ◦DA(L)→ Hn◦RF ◦DA(M)→ Hn◦RF ◦DA(N)→ Hn+1◦RF ◦DA(L)→ · · ·

which by definition of RnF is the same as

· · · → RnF (L)→ RnF (M)→ RnF (N)→ Rn+1F (L)→ · · ·

This isn’t quite the long exact sequence we want, since in (4) the terms for n < 0 vanish,
but this will be immediate once we’ve proved (1). So (4) is mostly done.

Next we prove (5). Let M ∈ ob(A), and let 0 → M → I0 → I1 → · · · be an injective
resolution of M , which we think of as a quasi-isomorphism DAM → I, where I is as in the
statement of (5). That is, DAM ∼= I in D+(A). So applying RF , we get an isomorphism in
D+(B).

RF ◦DA(M) ∼= RF (I)

Recalling the construction of RF as the composition of various functors as in remark 5.66,
we see that RF (I) = K(F )(I), and K(F )(I) is essentially C(F )(I), just viewed in a different
category. So then

RnF (M) = Hn ◦RF ◦DA(M) ∼= Hn ◦RF (I) = Hn
(
C(F )(I)

)
This finishes the proof of (5). Then (1) is immediate from (5), since Hn(C(F )(I)) = 0 for
n < 0, as the terms of I vanish for n < 0. As noted above, having (1) also completes the
proof of (4).

Next we can easily prove (2) as an immediate consequence of (4). By (4), the short exact
sequence 0→ L→M → N → 0 gives rise to an exact sequence 0→ R0F (L)→ R0F (M)→
R0F (N), which is exactly the condition that R0F is left exact.

Now we just sketch a proof of (3). One direction at least is easy. If H0(εF ) is an
isomorphism, then F ∼= R0F which is left exact by (2), so F is left exact.

Conversely, suppose F is left exact. We need to show that H0(εF ) is a natural isomor-
phism. Take an injective resolution 0→M → I0 → I1 → · · · . Then

0→ FM → FI0 → FI1

is exact, and tracing carefully through the definitions shows that

H0(εF,KAM) : FM → R0FM ∼= H0(K(F )(I)) ∼= FM

is an isomorphism, but we omit the details.
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We quickly sketch the dual definition and results for left derived functors. Nothing here is
surprising, it all simply dualizes the right derived functor statements.

Definition 5.70. Let F : A → B be an additive functor between abelian categories. A full
subcategory R ⊂ A is left adapted to F if

(LA1) R is an additve subcategory of A, meaning 0 ∈ R and R is closed under finite prod-
ucts/coproducts

(LA2) Every object in A is a quotient of an object of R. That is, for every M ∈ ob(A), there
exists an epimorphism R→M with R ∈ ob(R).

(LA3) If R ∈ ob(K−(R)) is acyclic, then K(F )(R) is acyclic in K−(B).

Theorem 5.71. Let A be an abelian category with enough projectives. Any additive functor
F : A → B has a left derived functor LF : D−(A)→ D−(B).

Definition 5.72. For n ∈ Z define

LnF : A → B LnF = H−n ◦ LF ◦D−A = H0 ◦ T−nD(B) ◦ LF ◦D
−
A

Notice the negative sign in the translation, this is a slight difference with the right derived
functor situation.

Remark 5.73. There is an analogous statement to proposition 5.69 for the left derived
functors LnF .

1. LnF = 0 for n > 0.

2. L0F is right exact.

3. The natural transformation F → L0F is an isomorphism if and only if F is right exact.

4. A short exact sequence 0→ L→M → N → 0 in A induces a long exact sequence

· · · → R1F (N)→ R0F (L)→ R0F (M)→ R0F (N)→ 0

5. Given a projective resolution · · · → P 1 → P 0 → M → 0, we can compute LnF by
taking cohomology of C(F )(P ), where P is the truncated complex · · · → P 1 → P 0 →
0→ · · · .

LnF (M) ∼= Hn
(
C(F )(P )

)
5.5 Derived hom and tensor functors

Let A be an abelian category with enough injectives, and let I be the subcategory of injective
objects.
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Example 5.74 (Ext functors). For A ∈ ob(A), consider the covariant left exact functor

HomA(A,−) : A → AbGp

By the theory developed above, this has a right derived functor

RHomA(A,−) : D+(A)→ D+(AbGp)

Taking cohomology, we obtain the classical right derived functors, known as Ext.

ExtiA(A,−) : A → AbGp ExtiA(A,−) = H i ◦RHomA(A,−)

Example 5.75 (Hyperext). We generalize the previous example to replace the object A
with a complex A•. Given complexes A•, B• ∈ ob(C(A)), define

Homn(A•, B•) :=
∏
k∈Z

HomA(Ak, Bk+n)

To make Hom•(A•, B•) into a complex, define a differential on it by

dn(f) = dB ◦ f − (−1)nf ◦ dA

where dA, dB are the respective differentials of A•, B•. By definition, the n-cocycles of
Hom•(A•, B•) are in bijection with chain maps A• → T n(B•), where T is the translation
functor. Similarly, the n-coboundaries of Hom•(A•, B•) are nullhomotopic chain maps. So
the cohomology is just the group of morphisms in the homotopy category.

Hn (Hom•(A•, B•)) = HomK(A)(A
•, T n(B•))

We leave it to the interested reader to verify that Hom• defines an exact bifunctor

Hom• : K(A)op ×K(A)→ K(A)

Before discussing the derived functors, we need a lemma. From now on, we drop the upper
dots in referring to complexes A•, B•.

Lemma 5.76. Let A ∈ ob(K(A)), B ∈ ob(K+(I)). Assume that at least one of A,B is
acyclic. Then Hom•(A,B) is acyclic.

Proof. By the previous discussion, it suffices to show that any morphism A
f−→ B is nullho-

motopic. If A is acyclic, we proved this earlier in lemma 5.28. If B is acyclic, then by the
same lemma the identity B → B is nullhomotopic, so f = IdB ◦f is nullhomotopic.

We continue our example. By the lemma, the functor

Hom•(A,−) : K+(A)→ K(AbGp)

is right adapted to the subcategory R = K+(I), so it has a right derived functor. Because
this is a bifunctor, it is functorial in the first variable, so we obtain an exact bifunctor

R2 Hom• : K(A)op ×D+(A)→ D(AbGp)
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The subscript 2 just keeps track of the fact that we derived with respect to the second
variable. Now, again using the lemma, R2 Hom• takes quasi-isomorphisms in the first variable
to quasi-isomorphisms, so we can also derive with respect to the first variable, and obtain a
derived functor

R1R2 Hom• : D(A)op ×D+(A)→ D+(AbGp)

Now suppose that A also has enough projectives. By dual arguments, we can obtain a
doubly-derived functor

R2R1 Hom• : D−(A)op ×D(A)→ D(AbGp)

If A has both enough injectives and enough projectives, one can show that these functors are
canonically isomorphic (when restricted to the intersection of their domains), so we denote
it by

RHom : D−(A)op ×D+(A)→ D(AbGp)

This generalizes the classical fact that ExtiA(A,B) can be computed using either an injective
resolution of B or a projective resolution of A. In most situations, having enough projectives
is too much to ask, so in the literature it is common to only assume there are enough injectives
and refer to R1R2 Hom• by RHom.

Definition 5.77. Let RHom• = R1R2 Hom• as described above. For A• ∈ ob(D(A)) and
B ∈ ob(D+(A)), we define the hyperext groups

ExtiA(A•, B•) := H i(RHom•(A•, B•))

for i ∈ Z (though of course they vanish for i < 0 as with any right derived functor).

Remark 5.78. We can recover the fact that Ext0A(A,B) = Hom(A,B) as follows. Let
A• ∈ ob(D(A)), B ∈ ob(D+(A)) as above. There exists a quasi-isomorphism

s : B• → I•

with I• ∈ ob(K+(I)) a complex of injectives. Then by general properties of right derived
functors,

RHom•(A•, B•) ∼= RHom•(A•, I•) ∼= Hom•(A•, I•)

Then taking cohomology,

H i(RHom(A•, B•)) ∼= H i (Hom•(A•, I•)) ∼= HomK(A)(A
•, T i(I•))

Since I• and T i(I•) consist of injectives, there are no quasi-isomorphisms A• → T i(I•) which
are not already isomorphisms in K(A), so

HomK(A)(A
•, T i(I•)) ∼= HomD(A)(A

•, T i(I•)) ∼= HomD(A)(A
•, T i(B•))

Putting this all together,

ExtiA(A•, B•) ∼= HomA(A•, T i(B•))
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and for i = 0 we have
Ext0A(A•, B•) ∼= HomD(A)(A

•, B•)

Since the functor A → D(A) is fully faithful, if A• = D(A), B• = D(B) are complexes
concentrated in degree zero, this gives us

Ext0A(A,B) ∼= HomA(A,B)

Example 5.79 (Tor and Hypertor). Let R be a commutative ring and let A be the category
of R-modules. Then A has enough injectives and enough projectives, and has a tensor
product operation. Let P ⊂ A be the full subcategory of projectives. Fix an R-module A.
The functor

A⊗− : A → A
is left exact (all tensor products will be over R). So there is a left derived functor

A⊗L − : D−(A)→ D−(A)

Taking cohomology, we recover the classical Tor functors.

TorRi (A,−) = H−i(A⊗L −)

Now as above, we generalize to replace A with a complex. Given complexes A•, B• ∈
ob(K(A)), define

(A• ⊗B•)n =
⊕
p+q=n

Ap ⊗Bq

with differential
dn = dA ⊗ 1 + (−1)n(1⊗ dB)

This makes (A• ⊗B•)• into a complex, and we obtain an exact bifunctor

−⊗− : K(A)×K(A)→ K(A)

Then we need a parallel to lemma 5.76.

Lemma 5.80. Let A• ∈ ob(K−(A)), B• ∈ ob(K−(P)). If A• or B• is acyclic, then so is
A• ⊗B•.

Proof. Uses spectral sequences, details omitted.

Now we can continue the example. By the lemma, K−(P) is left adapted for the functor
A• ⊗−, so we get a left derived functor

L2(−⊗−) : K−(A)×D−(A)→ D(A)

and with another application of the lemma we can derived with respect to the first variable
and obtain

L1L2(−⊗−) : D−(A)×D−(A)→ D(A)

As before, we can do these derivations in the reverse order, and the resulting functors are
canonically isomorphic. So we denote it by

−⊗L − : D−(A)→ D−(A)→ D(A)

Then hypertor groups are defined analogously to hyperext groups.
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As in the previous example, let R be a commutative ring andA be the category of R-modules.
Recall the classical tensor-hom adjunction, which we express as a natural isomorphism

HomR(M,HomR(N,P )) ∼= HomR(M ⊗R N,P )

By “natural,” we mean that this is functorial in the variables M and P . (Perhaps this is
functorial in N as well, I forget.) Anyway, in the derived setting there is a generalization of
this using derived hom and derived tensor.

Proposition 5.81. For complexes A•, B• ∈ ob(D−(A)), C• ∈ ob(D+(A)), there is a natural
isomorphism

HomD(A) (A•, RHom• (B•, C•)) ∼= HomD(A)
(
A• ⊗L B•, C•

)
Note that this does not give rise to a new proof of the classical tensor-hom adjunction, since
the classical adjunction is used as a setp in the proof.

Remark 5.82. In algebraic geometry, the common abelian category of interest is the cat-
egory A of OX-modules, where X is a scheme and OX is the structure sheaf on X. This
category has enough injectives, but in general does not have enough projectives.

One remedy or workaround for the lack of projectives is to utilize flatOX-modules instead.
So even though projectives do not form a category adapted for tensor project of OX-modules,
flat modules do, so there is still a derived tensor functor.

5.6 Derived sheaf-theoretic functors

Let X be a topological space, and let Sh(X) be the abelian category of sheaves of abelian
groups on X. Recall that Sh(X) has enough injectives.

Example 5.83 (Sheaf cohomology and hypercohomology). Let Γ : Sh(X)→ AbGp be the
global sections functor, Γ(F ) = F (X) is the group of global sections. Then Γ is left exact,
so it has a right derived functor

RΓ : D+(Sh(X))→ D+(AbGp)

So taking cohomology, we recover the classical sheaf cohomology groups.

RiΓ(F ) = H i(X,F )

for a sheaf F on X. When F • ∈ ob(D+(Sh(X)) is a complex of sheaves, the groups

H i(X,F •) = RiΓ(F •)

are called hypercohomology groups of F •.

Example 5.84 (Higher direct images). First we recall the direct image functor. Let
f : X → Y be a continuous map of topological spaces. The direct image functor

f∗ : Sh(X)→ Sh(Y )

124



takes a sheaf F on X to a new sheaf f∗F on Y defined on an open subset U ⊂ Y by

f∗F (U) = F (f−1(U))

The functor f∗ is left exact, so it has a right derived functor

Rf∗ : D+(Sh(X))→ D+(Sh(Y ))

Taking cohomology, we obtain the higher direct image functors.

Rif∗ := H i ◦Rf∗

Definition 5.85. Let F ∈ Sh(X) be a sheaf, and U ⊂ X an open subset. Let s ∈ F (U) be
a section. The support of s is

supp(s) := {u ∈ U : su 6= 0}

where su is the image of s in the stalk Fu.

Definition 5.86. A continuous map g : X → Y is proper if for any compact set in Y , the
preimage in X is compact.

Example 5.87 (Higher direct image with compact support). Let X, Y be locally compact
spaces, and let f : X → Y be a continuous map. For U ⊂ Y and F ∈ Sh(X), define

f!F (U) =
{
s ∈ F (f−1(U)) : supp(s)

f−→ U is a proper map
}

If you are familiar with extension by zero, you might think of f! as a “relative” version of
that. In any case, it is clear that f!(F )(U) ⊂ f∗F (U), so you can also think of it as the direct
image with “compact support,” which is encoded by the condition that f : supp(s) → U is
proper. It is possible to show that

1. f!F is a sheaf, in particular a subsheaf of f∗F

2. F 7→ f!F is a left exact functor f! : Sh(X)→ Sh(Y )

The subscript exclamation point is read as “shriek,” so the functor f! is called “f lower
shriek.” Is is also called the direct image with compact support.

An important special case is when Y = {∗} is a single point. Then Sh(Y ) is just the
category of abelian groups 20, and for any sheaf F ∈ Sh(X), f!F (X) is the group of global
sections s ∈ F (X) such that supp(s) is a compact subset of X. (This is probably where the
naming comes from.) This group is also denoted

Γc(X,F ) = f!F (X)

The subscript c here is short for “compact.” Since Sh(X) has enough injectives, f! has a right
derived functor. However, before discussing this derived functor, we note that is common

20A sheaf on a single point space is just described by the group of global sections.
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when working with f! to enlarge the adapted subcategory from injective sheaves to soft
sheaves 21. Injective sheaves are soft, and soft sheaves form a right adapted subcategory for
f!, so now we move on to discussing its right derived functor.

Rf! : D+(Sh(X))→ D+(Sh(Y ))

Taking cohomology, we obtain functors

Rif! = H i ◦Rf!

which are called higher direct images with compact support. When Y = ∗ is a point,
the derived functor is denoted

RΓc : D+(Sh(X))→ D+(AbGp)

and the composition with cohomology is denoted by

H i
c(X,F ) = H i ◦RΓc(F )

Definition 5.88. Let X be a locally compact space. The cohomological dimension of
X is the smallest integer n such that for any sheaf F ∈ Sh(X), H i

c(X,F ) = 0 for all i > n.
We denote it by dimC X.

Example 5.89. I’m pretty sure that if X is a smooth manifold, then the cohomological
dimension agrees with the dimension of the local charts.

As a final example, we can state (but definitely not prove) a version of Verdier duality.

Theorem 5.90 (Verdier duality). Let f : X → Y be a continuous map between locally
compact spaces of finite cohomological dimension. There exists a functor

f ! : D+(Sh(Y ))→ D+(Sh(X))

22 and a natural isomorphism

RHom•(Rf!F
•, G•) ∼= RHom(F •, f !G•)

By “natural,” we mean functorial in F • and G•.

Remark 5.91. If we apply the functor H0 to both sides of the isomorphisma bove, we obtain

HomD(Sh(Y ))(Rf!F
•, G•) ∼= HomD(Sh(X))(F

•, f !G•)

which is again functorial in F •, G•. So f ! is right adjoint to Rf!.

21A sheaf F is soft if for any closed set K ⊂ X, any section s ∈ F (K) extends to a section s̃ ∈ F (X).
Informally, this says that the restriction map F (X) → F (K) is surjective, but technically speaking that
doesn’t make any sense, since restriction is only defined for open subsets. But if working with a sheaf of
functions, this makes sense, and there are ways to make this precise.

22This functor is read as “f upper shriek.”
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Remark 5.92. In general, f ! only exists on the level of derived categories. That is to say,
there is not a functor Sh(Y ) → Sh(X) which has f ! as its derived functor (maybe there is
in some cases, if you add more assumptions on X, Y , but not in general).

Definition 5.93. Take Y = {∗} in the theorem, so Sh(Y ) = AbGp. Let Z denote the
complex with Z concentrated in degree zero in D+(Sh(Y )) = D+(AbGp), and let f : X →
{∗} be the unique map. Define

D•X = f !(Z) ∈ D+(Sh(X))

This is called the dualizing complex of X. Verdier duality says that

RHom•(RΓc(X,F
•),Z) ∼= RHom•(F •,D•X)

In general, there isn’t too much more one can say about D•X . In particular, even though Z
is concentrated in a single degree, D•X need not be.

Remark 5.94. If X is a smooth manifold, one can prove that D•X is concentrated in degree
zero. Using this fact, one can recover classical Poincaré duality from Verdier duality, using
some additional analysis of D•X . So Verdier duality provides a vast generalization of Poincaré
duality, since it applies not only to smooth manifolds, but to the much larger category of
locally compact topological spaces.
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